Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 335: 125287, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34034065

RESUMO

Biogas upgrading is a necessary step to minimize the CO2 of raw biogas and to make it suitable for gas liquefaction or introduction into the national gas grid. Biomethanation is a promising approach since it converts the CO2 to more methane on site, while taking advantage of the organisms responsible for biogas production in the first place. This study investigates the suitability of a pseudo-dead-end membrane biofilm reactor (MBfR) for ex-situ biogas upgrading using biogas as sole carbon source as well as for additional acetoclastic methanation when an organic carbon source is provided. Results prove that the concept of MBfR is especially advantageous for ex-situ hydrogenotrophic methanation of biogas CO2, yielding high product gas qualities of up to 99% methane. It is discussed that cross-flow membrane operation could reduce mass flux of inert methane through membranes, attached biofilms, and reactor liquid, and, thus, improve methanation space time yields.


Assuntos
Biocombustíveis , Reatores Biológicos , Biofilmes , Carbono , Dióxido de Carbono , Hidrogênio , Metano
2.
Bioresour Technol ; 321: 124444, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33285505

RESUMO

Biomethanation of CO2 has been proven to be a feasible way to produce methane with the employment of H2 as electron source. Subject of the present study is a custom-made membrane biofilm reactor for hydrogenotrophic methanation by archaeal biofilms cultivated on membrane surfaces. Reactor layout was adapted to allow for in situ biofilm analysis via optical coherence tomography. At a feeding ratio of H2/CO2 of 3.6, and despite the low membrane surface to reactor volume ratio of 57.9 m2 m-3, the maximum methane production per reactor volume reached up to 1.17 Nm3 m-3 d-1 at a methane content of the produced gas above 97% (v/v). These results demonstrate that the concept of membrane bound biofilms enables improved mass transfer by delivering substrate gases directly to the biofilm, thus, rendering the bottleneck of low solubility of hydrogen in water less drastic.


Assuntos
Reatores Biológicos , Metano , Biofilmes , Hidrogênio
3.
ISME J ; 14(5): 1125-1140, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31996786

RESUMO

Coupling microbial electrosynthesis to renewable energy sources can provide a promising future technology for carbon dioxide conversion. However, this technology suffers from a limited number of suitable biocatalysts, resulting in a narrow product range. Here, we present the characterization of the first thermoacidophilic electroautotrophic community using chronoamperometric, metagenomic, and 13C-labeling analyses. The cathodic biofilm showed current consumption of up to -80 µA cm-2 over a period of 90 days (-350 mV vs. SHE). Metagenomic analyses identified members of the genera Moorella, Desulfofundulus, Thermodesulfitimonas, Sulfolobus, and Acidianus as potential primary producers of the biofilm, potentially thriving via an interspecies sulfur cycle. Hydrogenases seem to be key for cathodic electron uptake. An isolation campaign led to a pure culture of a Knallgas bacterium from this community. Growth of this organism on cathodes led to increasing reductive currents over time. Transcriptomic analyses revealed a distinct gene expression profile of cells grown at a cathode. Moreover, pressurizable flow cells combined with optical coherence tomography allowed an in situ observation of cathodic biofilm growth. Autotrophic growth was confirmed via isotope analysis. As a natural polyhydroxybutyrate (PHB) producer, this novel species, Kyrpidia spormannii, coupled the production of PHB to CO2 fixation on cathode surfaces.


Assuntos
Bacillales/fisiologia , Biofilmes/crescimento & desenvolvimento , Extremófilos/fisiologia , Processos Autotróficos , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Eletrodos , Extremófilos/metabolismo , Hidrogenase/metabolismo
4.
Microorganisms ; 9(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396703

RESUMO

The biotechnological usage of carbon dioxide has become a relevant aim for future processes. Microbial electrosynthesis is a rather new technique to energize biological CO2 fixation with the advantage to establish a continuous process based on a cathodic biofilm that is supplied with renewable electrical energy as electron and energy source. In this study, the recently characterized cathodic biofilm forming microorganism Kyrpidia spormannii strain EA-1 was used in an adaptive laboratory evolution experiment to enhance its cathodic biofilm growth capabilities. At the end of the experiment, the adapted cathodic population exhibited an up to fourfold higher biofilm accumulation rate, as well as faster substratum coverage and a more uniform biofilm morphology compared to the progenitor strain. Genomic variant analysis revealed a genomically heterogeneous population with genetic variations occurring to various extends throughout the community. Via the conducted analysis we identified possible targets for future genetic engineering with the aim to further optimize cathodic growth. Moreover, the results assist in elucidating the underlying processes that enable cathodic biofilm formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...