Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642547

RESUMO

Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-γ response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.

2.
J Immunol ; 212(1): 35-42, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019126

RESUMO

NKT cells are unconventional T cells whose biological role is incompletely understood. Similar to TH cells, activated NKT cells can cause dendritic cell (DC) maturation, which is required for effective CTL responses. However, it is unclear whether and how NKT cells affect CTLs downstream of the DC maturation phase. This is partially due to the lack of techniques to conditionally deplete NKT cells in vivo. To overcome this problem, we have developed two approaches for this purpose in mice: the first is based on mixed bone marrow chimeras where Jα18 knockout and depletable CD90 congenic bone marrow is combined, and the second used PLZFCre × iDTR bone marrow chimeras, which target innate-like T cells. Using these tools, we found that NKT cell depletion at 20 h, that is, after initial DC activation, did not render CTLs helpless, as CD40L signaling by non-NKT cells sufficed. Instead, NKT cell depletion even augmented CD8 T cell expansion and cytotoxicity by mechanisms distinct from reduced STAT6 signaling. These findings revealed a negative feedback loop by which NKT cells control CTL cross-priming downstream of DC maturation. The techniques described in this study expand the toolbox to study NKT cells and other unconventional T cell subsets in vivo and uncovered a hidden immunoregulatory mechanism.


Assuntos
Apresentação Cruzada , Células T Matadoras Naturais , Camundongos , Animais , Retroalimentação , Linfócitos T Citotóxicos , Camundongos Knockout , Células Dendríticas , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 14: 1248658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711627

RESUMO

Introduction: Family studies of antiviral immunity provide an opportunity to assess virus-specific immunity in infected and highly exposed individuals, as well as to examine the dynamics of viral infection within families. Transmission of SARS-CoV-2 between family members represented a major route for viral spread during the early stages of the pandemic, due to the nature of SARS-CoV-2 transmission through close contacts. Methods: Here, humoral and cellular immunity is explored in 264 SARS-CoV-2 infected, exposed or unexposed individuals from 81 families in the United Kingdom sampled in the winter of 2020 before widespread vaccination and infection. Results: We describe robust cellular and humoral immunity into COVID-19 convalescence, albeit with marked heterogeneity between families and between individuals. T-cell response magnitude is associated with male sex and older age by multiple linear regression. SARS-CoV-2-specific T-cell responses in seronegative individuals are widespread, particularly in adults and in individuals exposed to SARS-CoV-2 through an infected family member. The magnitude of this response is associated with the number of seropositive family members, with a greater number of seropositive individuals within a family leading to stronger T-cell immunity in seronegative individuals. Discussion: These results support a model whereby exposure to SARS-CoV-2 promotes T-cell immunity in the absence of an antibody response. The source of these seronegative T-cell responses to SARS-CoV-2 has been suggested as cross-reactive immunity to endemic coronaviruses that is expanded upon SARS-CoV-2 exposure. However, in this study, no association between HCoV-specific immunity and seronegative T-cell immunity to SARS-CoV-2 is identified, suggesting that de novo T-cell immunity may be generated in seronegative SARS-CoV-2 exposed individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Masculino , Imunidade Celular , Antivirais , Família
4.
Clin Exp Immunol ; 213(1): 1-9, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256718

RESUMO

Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.


Assuntos
Receptores de Antígenos de Linfócitos T , Subpopulações de Linfócitos T , Antígenos , Citocinas
5.
J Hepatol ; 79(1): 150-166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870611

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
6.
Immunol Cell Biol ; 101(3): 262-272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541521

RESUMO

Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell type conserved in many mammals and especially abundant in humans. Their semi-invariant T-cell receptor (TCR) recognizes the major histocompatibility complex-like molecule MR1 presenting riboflavin intermediates associated with microbial metabolism. Full MAIT cell triggering requires costimulation via cytokines, and the cells can also be effectively triggered in a TCR-independent manner by cytokines [e.g. interleukin (IL)-12 and IL-18 in combination]. Thus, triggering of MAIT cells is highly sensitive to local soluble mediators. Suppression of MAIT cell activation has not been well explored and could be very relevant to their roles in infection, inflammation and cancer. Prostaglandins (PG) are major local mediators of these microenvironments which can have regulatory roles for T cells. Here, we explored whether prostaglandins suppressed MAIT cell activation in response to TCR-dependent and TCR-independent signals. We found that protaglandin E2 (PGE2 ) and to a lesser extent protaglandin D2 (PGD2 ), but not leukotrienes, suppressed MAIT cell responses to Escherichia coli or TCR triggers. However, there was no impact on cytokine-induced triggering. The inhibition was blocked by targeting the signaling mediated via PG receptor 2 (PTGER2) and 4 (PTGER4) receptors in combination. These data indicate that prostaglandins can potentially modulate local MAIT cell functions in vivo and indicate distinct regulation of the TCR-dependent and TCR-independent pathways of MAIT cell activation.


Assuntos
Células T Invariantes Associadas à Mucosa , Animais , Humanos , Prostaglandinas/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Citocinas/metabolismo , Interleucina-12/metabolismo , Ativação Linfocitária , Mamíferos/metabolismo
7.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196614

RESUMO

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Assuntos
COVID-19 , Infecções por HIV , Adulto , Humanos , HIV , ChAdOx1 nCoV-19 , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Ativação Linfocitária , Vacinação , Infecções por HIV/tratamento farmacológico , Imunoglobulina G , Anticorpos Antivirais
8.
Nat Commun ; 13(1): 7472, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463279

RESUMO

Interactions with commensal microbes shape host immunity on multiple levels and play a pivotal role in human health and disease. Tissue-dwelling, antigen-specific T cells are poised to respond to local insults, making their phenotype important in the relationship between host and microbes. Here we show that MHC-II restricted, commensal-reactive T cells in the colon of both humans and mice acquire transcriptional and functional characteristics associated with innate-like T cells. This cell population is abundant and conserved in the human and murine colon and endowed with polyfunctional effector properties spanning classic Th1- and Th17-cytokines, cytotoxic molecules, and regulators of epithelial homeostasis. T cells with this phenotype are increased in ulcerative colitis patients, and their presence aggravates pathology in dextran sodium sulphate-treated mice, pointing towards a pathogenic role in colitis. Our findings add to the expanding spectrum of innate-like immune cells positioned at the frontline of intestinal immune surveillance, capable of acting as sentinels of microbes and the local cytokine milieu.


Assuntos
Besouros , Colite , Humanos , Camundongos , Animais , Contagem de Linfócitos , Vigilância Imunológica , Colite/induzido quimicamente , Citocinas
9.
Semin Immunol ; 61-64: 101661, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36374780

RESUMO

MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Citocinas/metabolismo , Ativação Linfocitária
10.
Nat Commun ; 13(1): 1251, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273178

RESUMO

The trajectories of acquired immunity to severe acute respiratory syndrome coronavirus 2 infection are not fully understood. We present a detailed longitudinal cohort study of UK healthcare workers prior to vaccination, presenting April-June 2020 with asymptomatic or symptomatic infection. Here we show a highly variable range of responses, some of which (T cell interferon-gamma ELISpot, N-specific antibody) wane over time, while others (spike-specific antibody, B cell memory ELISpot) are stable. We use integrative analysis and a machine-learning approach (SIMON - Sequential Iterative Modeling OverNight) to explore this heterogeneity. We identify a subgroup of participants with higher antibody responses and interferon-gamma ELISpot T cell responses, and a robust trajectory for longer term immunity associates with higher levels of neutralising antibodies against the infecting (Victoria) strain and also against variants B.1.1.7 (alpha) and B.1.351 (beta). These variable trajectories following early priming may define subsequent protection from severe disease from novel variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Antivirais , Humanos , Estudos Longitudinais , Glicoproteína da Espícula de Coronavírus
11.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951583

RESUMO

Human MAIT cells sit at the interface between innate and adaptive immunity, are polyfunctional and are capable of killing pathogen infected cells via recognition of the Class IB molecule MR1. MAIT cells have recently been shown to possess an antiviral protective role in vivo and we therefore sought to explore this in relation to HIV-1 infection. There was marked activation of MAIT cells in vivo in HIV-1-infected individuals, which decreased following ART. Stimulation of THP1 monocytes with R5 tropic HIVBAL potently activated MAIT cells in vitro. This activation was dependent on IL-12 and IL-18 but was independent of the TCR. Upon activation, MAIT cells were able to upregulate granzyme B, IFNγ and HIV-1 restriction factors CCL3, 4, and 5. Restriction factors produced by MAIT cells inhibited HIV-1 infection of primary PBMCs and immortalized target cells in vitro. These data reveal MAIT cells to be an additional T cell population responding to HIV-1, with a potentially important role in controlling viral replication at mucosal sites.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Leucócitos Mononucleares/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Adulto , Idoso , Infecções por HIV/virologia , Humanos , Pessoa de Meia-Idade , Adulto Jovem
12.
Nat Commun ; 12(1): 2055, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824342

RESUMO

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Assuntos
Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , Reações Cruzadas/imunologia , Imunoensaio/métodos , SARS-CoV-2/fisiologia , Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/epidemiologia , Proliferação de Células , Citocinas/metabolismo , Células HEK293 , Pessoal de Saúde , Humanos , Imunoglobulina G/imunologia , Memória Imunológica , Interferon gama/metabolismo , Pandemias , Peptídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos
13.
Nat Commun ; 11(1): 6385, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318491

RESUMO

The response to the coronavirus disease 2019 (COVID-19) pandemic has been hampered by lack of an effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antiviral therapy. Here we report the use of remdesivir in a patient with COVID-19 and the prototypic genetic antibody deficiency X-linked agammaglobulinaemia (XLA). Despite evidence of complement activation and a robust T cell response, the patient developed persistent SARS-CoV-2 pneumonitis, without progressing to multi-organ involvement. This unusual clinical course is consistent with a contribution of antibodies to both viral clearance and progression to severe disease. In the absence of these confounders, we take an experimental medicine approach to examine the in vivo utility of remdesivir. Over two independent courses of treatment, we observe a temporally correlated clinical and virological response, leading to clinical resolution and viral clearance, with no evidence of acquired drug resistance. We therefore provide evidence for the antiviral efficacy of remdesivir in vivo, and its potential benefit in selected patients.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Imunidade Humoral/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/uso terapêutico , Adulto , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19/virologia , Febre/prevenção & controle , Humanos , Imunidade Humoral/imunologia , Contagem de Linfócitos , Masculino , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Resultado do Tratamento
14.
Front Immunol ; 11: 584521, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329559

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells present at considerable frequencies in human blood and barrier tissues, armed with an expanding array of effector functions in response to homeostatic perturbations. Analogous to other barrier immune cells, their phenotype and function is driven by crosstalk with host and dynamic environmental factors, most pertinently the microbiome. Given their distribution, they must function in diverse extracellular milieus. Tissue-specific and adapted functions of barrier immune cells are shaped by transcriptional programs and regulated through a blend of local cellular, inflammatory, physiological, and metabolic mediators unique to each microenvironment. This review compares the phenotype and function of MAIT cells with other barrier immune cells, highlighting potential areas for future exploration. Appreciation of MAIT cell biology within tissues is crucial to understanding their niche in health and disease.


Assuntos
Células T Invariantes Associadas à Mucosa/imunologia , Animais , Microambiente Celular/imunologia , Homeostase/imunologia , Humanos , Imunidade/imunologia , Inflamação/imunologia , Transcrição Gênica/imunologia
16.
Methods Mol Biol ; 2098: 97-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792818

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant innate-like T cell subset in humans, enriched in mucosal tissues and the liver. MAIT cells express a semi-invariant T cell receptor (TCR) and recognize microbial-derived riboflavin metabolites presented on the MHC Class I-like molecule MR1. In addition to activation via the TCR, MAIT cells can also be activated in response to cytokines such as IL-12 and IL-18, in contrast to conventional T cells. Here we describe TCR-dependent and -independent methods for MAIT cell activation. The TCR-dependent approaches include stimulation with microbead- or plate-bound anti-CD3/anti-CD28 antibodies, and with 5-OP-RU or paraformaldehyde (PFA)-fixed E. coli in the presence of antigen-presenting cells (APCs). The latter method includes a combination of TCR- and cytokine-mediated stimulation. The TCR-independent methods include direct stimulation with the recombinant cytokines IL-12 and IL-18, and indirect stimulation with TLR-4/TLR-8 agonists or influenza A virus in the presence of APCs. Finally, we outline a protocol to analyze activated MAIT cells using flow cytometry.


Assuntos
Ativação Linfocitária/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/imunologia , Citometria de Fluxo , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Coloração e Rotulagem , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Vírus/imunologia
17.
Cell Rep ; 28(12): 3077-3091.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533032

RESUMO

MAIT cells are an unconventional T cell population that can be activated through both TCR-dependent and TCR-independent mechanisms. Here, we examined the impact of combinations of TCR-dependent and TCR-independent signals in human CD8+ MAIT cells. TCR-independent activation of these MAIT cells from blood and gut was maximized by extending the panel of cytokines to include TNF-superfamily member TL1A. RNA-seq experiments revealed that TCR-dependent and TCR-independent signals drive MAIT cells to exert overlapping and specific effector functions, affecting both host defense and tissue homeostasis. Although TCR triggering alone is insufficient to drive sustained activation, TCR-triggered MAIT cells showed specific enrichment of tissue-repair functions at the gene and protein levels and in in vitro assays. Altogether, these data indicate the blend of TCR-dependent and TCR-independent signaling to CD8+ MAIT cells may play a role in controlling the balance between healthy and pathological processes of tissue inflammation and repair.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/patologia , Células CACO-2 , Citocinas/imunologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/patologia , Células THP-1
18.
PLoS Genet ; 15(6): e1008178, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199784

RESUMO

Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-ß mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.


Assuntos
Antígenos CD/genética , Antígenos Ly/genética , Diabetes Mellitus Tipo 1/genética , Pâncreas/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diabetes Mellitus Tipo 1/patologia , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença , Haplótipos/genética , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Pâncreas/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
19.
Gut ; 66(3): 507-518, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27432540

RESUMO

OBJECTIVE: Patients with liver cirrhosis suffer from increased susceptibility to life-threatening bacterial infections that cause substantial morbidity. METHODS: Experimental liver fibrosis in mice induced by bile duct ligation or CCl4 application was used to characterise the mechanisms determining failure of innate immunity to control bacterial infections. RESULTS: In murine liver fibrosis, translocation of gut microbiota induced tonic type I interferon (IFN) expression in the liver. Such tonic IFN expression conditioned liver myeloid cells to produce high concentrations of IFN upon intracellular infection with Listeria that activate cytosolic pattern recognition receptors. Such IFN-receptor signalling caused myeloid cell interleukin (IL)-10 production that corrupted antibacterial immunity, leading to loss of infection-control and to infection-associated mortality. In patients with liver cirrhosis, we also found a prominent liver IFN signature and myeloid cells showed increased IL-10 production after bacterial infection. Thus, myeloid cells are both source and target of IFN-induced and IL-10-mediated immune dysfunction. Antibody-mediated blockade of IFN-receptor or IL-10-receptor signalling reconstituted antibacterial immunity and prevented infection-associated mortality in mice with liver fibrosis. CONCLUSIONS: In severe liver fibrosis and cirrhosis, failure to control bacterial infection is caused by augmented IFN and IL-10 expression that incapacitates antibacterial immunity of myeloid cells. Targeted interference with the immune regulatory host factors IL-10 and IFN reconstitutes antibacterial immunity and may be used as therapeutic strategy to control bacterial infections in patients with liver cirrhosis.


Assuntos
Translocação Bacteriana , Imunidade Inata , Interferon Tipo I/metabolismo , Interleucina-10/biossíntese , Listeriose/imunologia , Cirrose Hepática Experimental/imunologia , Células Mieloides/imunologia , Animais , Tetracloreto de Carbono , Imunidade Inata/genética , Listeriose/complicações , Listeriose/metabolismo , Cirrose Hepática Experimental/complicações , Cirrose Hepática Experimental/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Proteínas de Resistência a Myxovirus/genética , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/genética , Receptores de Interleucina-10/antagonistas & inibidores , Receptores de Reconhecimento de Padrão/genética , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...