Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 27(6): 2256-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23430975

RESUMO

As a strategy to treat Duchenne muscular dystrophy, we used arginine butyrate, which combines two pharmacological activities: nitric oxide pathway activation, and histone deacetylase inhibition. Continuous intraperitoneal administration to dystrophin-deficient mdx mice resulted in a near 2-fold increase in utrophin (protein homologous to dystrophin) in skeletal muscle, heart, and brain, accompanied by an improvement of the dystrophic phenotype in both adult and newborn mice (45 and 70% decrease in creatine kinase level, respectively; 14% increase in tidal volume, 30% decrease in necrotic area in limb and 23% increase in isometric force). Intermittent administration, as performed in clinical trials, was then used to reduce the frequency of injections and to improve safety. This also enhanced utrophin level around 2-fold (EC50=284 mg/ml) and alleviated the dystrophic phenotype (inverted grid and grip test performance near to wild-type values, creatine kinase level decreased by 50%). Skin biopsies were used to monitor treatment efficacy, instead of invasive muscle biopsies, and this could be done a few days after the start of treatment. A 2-fold increase in utrophin expression was also shown in cultured human myotubes. In vivo and in vitro experiments demonstrated that the drug combination acts synergistically. Together, these data constitute a proof of principle of the beneficial effects of arginine butyrate on muscular dystrophy.


Assuntos
Arginina/análogos & derivados , Butiratos/uso terapêutico , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Animais , Animais Recém-Nascidos , Arginina/administração & dosagem , Arginina/uso terapêutico , Butiratos/administração & dosagem , Células Cultivadas , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Utrofina/genética
2.
Brain ; 135(Pt 2): 483-92, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22240777

RESUMO

γ-Sarcoglycanopathy or limb girdle muscular dystrophy type 2C is an untreatable disease caused by autosomal recessively inherited mutations of the γ-sarcoglycan gene. Nine non-ambulatory patients (two males, seven females, mean age 27 years; range 16-38 years) with del525T homozygous mutation of the γ-sarcoglycan gene and no γ-sarcoglycan immunostaining on muscle biopsy were divided into three equal groups to receive three escalating doses of an adeno-associated virus serotype 1 vector expressing the human γ-sarcoglycan gene under the control of the desmin promoter, by local injection into the extensor carpi radialis muscle. The first group received a single injection of 3 × 10(9) viral genomes in 100 µl, the second group received a single injection of 1.5 × 10(10) viral genomes in 100 µl, and the third group received three simultaneous 100-µl injections at the same site, delivering a total dose of 4.5 × 10(10) viral genomes. No serious adverse effects occurred during 6 months of follow-up. All nine patients became adeno-associated virus serotype 1 seropositive and one developed a cytotoxic response to the adeno-associated virus serotype 1 capsid. Thirty days later, immunohistochemical analysis of injected-muscle biopsy specimens showed γ-sarcoglycan expression in all three patients who received the highest dose (4.7-10.5% positively stained fibres), while real-time polymerase chain reaction detected γ-sarcoglycan messenger RNA. In one patient, γ-sarcoglycan protein was detected by western blot. For two other patients who received the low and intermediate doses, discrete levels of γ-sarcoglycan expression (<1% positively stained fibres) were also detectable. Expression of γ-sarcoglycan protein can be induced in patients with limb girdle muscular dystrophy type 2C by adeno-associated virus serotype 1 gene transfer, with no serious adverse effects.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanas/genética , Adolescente , Adulto , Dependovirus/genética , Dependovirus/metabolismo , Feminino , Seguimentos , Vetores Genéticos , Humanos , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Sarcoglicanas/metabolismo , Resultado do Tratamento
3.
Neuromuscul Disord ; 17(5): 409-14, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17363247

RESUMO

Congenital myasthenic syndromes (CMSs) are rare hereditary disorders transmitted in a recessive or dominant pattern, and are caused by mutations in the genes encoding proteins of the neuromuscular junction. They are classified in three groups depending on the origin of the molecular defect. Postsynaptic defects are the most frequent and have been reported to be partly due to abnormalities of the acetylcholine receptor, and particularly to mutations in CHRNE, the gene encoding the acetylcholine receptor epsilon-subunit. In a Portuguese patient with a mild form of recessive CMS, CHRNE sequencing identified an unknown homozygous transition. This variation affects the third nucleotide of the glycine 285 condon, and leads to a synonymous variant. Analysis of transcripts demonstrated that this single change creates a new splice donor site located 4 nucleotides upstream of the normal site, leading to a deletion and generating a frameshift in exon 9 followed by a premature termination codon. This paper relates the identification of a synonymous mutation in CHRNE that creates a new splice donor site leading to an aberrant splicing of pre-mRNAs and so to their instability. This is the first synonymous mutation in CHRNE known to generate a cryptic splice site, and mRNA quantification strongly suggests that it is the disease-causing mutation.


Assuntos
Mutação , Síndromes Miastênicas Congênitas/genética , Splicing de RNA , Receptores Nicotínicos/genética , Adolescente , Bungarotoxinas/metabolismo , Análise Mutacional de DNA/métodos , Feminino , Glicina/genética , Humanos , Síndromes Miastênicas Congênitas/metabolismo , Receptores Nicotínicos/metabolismo
4.
Muscle Nerve ; 28(4): 432-7, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14506714

RESUMO

Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of the survival motor neuron 1 gene (SMN1). No curative treatment is available. Mutant mice carrying homozygous deletion of Smn exon 7 directed to neurons display a degenerative process of motor neurons similar to that found in human SMA. To test whether riluzole, which exhibits neurotrophic properties, might have a protective role in SMA, mutant mice were treated with it after the onset of the degenerative process. Riluzole improved median survival and exerted a protective effect against aberrant cytoskeletal organization of motor synaptic terminals but not against loss of proximal axons. These results demonstrate that the disease course of SMA can be attenuated after the onset of neuromuscular defects and may warrant further investigation in a therapeutic trial in SMA.


Assuntos
Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Riluzol/farmacologia , Animais , Axônios/ultraestrutura , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Citoesqueleto/ultraestrutura , Progressão da Doença , Deleção de Genes , Camundongos , Camundongos Mutantes , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/ultraestrutura , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidade , Proteínas do Tecido Nervoso/genética , Terminações Pré-Sinápticas/ultraestrutura , Proteínas de Ligação a RNA , Proteínas do Complexo SMN , Análise de Sobrevida , Proteína 1 de Sobrevivência do Neurônio Motor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...