Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(10): 6523-6528, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27617350

RESUMO

The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π-π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, and hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. Due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.

2.
Adv Mater ; 28(10): 1989-93, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26755432

RESUMO

Investigations through high-pressure X-ray scattering and spectroscopy in combination with theoretical computations shows that high-pressure compression can systematically tune the optical properties and mechanical stability of the molecular nanocrystals.


Assuntos
Nanopartículas/química , Metaloporfirinas/química , Conformação Molecular , Pressão , Espectrofotometria Ultravioleta , Difração de Raios X
4.
Nano Lett ; 14(12): 7175-9, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25365754

RESUMO

Abilities to control the size and shape of nanocrystals in order to tune functional properties are an important grand challenge. Here we report a surfactant self-assembly induced micelle encapsulation method to fabricate porphyrin nanocrystals using the optically active precursor zinc porphyrin (ZnTPP). Through confined noncovalent interactions of ZnTPP within surfactant micelles, nanocrystals with a series of morphologies including nanodisk, tetragonal rod, and hexagonal rod, as well as amorphous spherical particle are synthesized with controlled size and dimension. A phase diagram that describes morphology control is achieved via kinetically controlled nucleation and growth. Because of the spatial ordering of ZnTPP, the hierarchical nanocrystals exhibit both collective optical properties resulted from coupling of molecular ZnTPP and shape dependent photocatalytic activities in photo degradation of methyl orange pollutants. This simple ability to exert rational control over dimension and morphology provides new opportunities for practical applications in photocatalysis, sensing, and nanoelectronics.

5.
Sci Rep ; 4: 5294, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938871

RESUMO

Photoluminescent graphene quantum dots (GQDs) have received enormous attention because of their unique chemical, electronic and optical properties. Here a series of GQDs were synthesized under hydrothermal processes in order to investigate the formation process and optical properties of N-doped GQDs. Citric acid (CA) was used as a carbon precursor and self-assembled into sheet structure in a basic condition and formed N-free GQD graphite framework through intermolecular dehydrolysis reaction. N-doped GQDs were prepared using a series of N-containing bases such as urea. Detailed structural and property studies demonstrated the formation mechanism of N-doped GQDs for tunable optical emissions. Hydrothermal conditions promote formation of amide between -NH2 and -COOH with the presence of amine in the reaction. The intramoleculur dehydrolysis between neighbour amide and COOH groups led to formation of pyrrolic N in the graphene framework. Further, the pyrrolic N transformed to graphite N under hydrothermal conditions. N-doping results in a great improvement of PL quantum yield (QY) of GQDs. By optimized reaction conditions, the highest PL QY (94%) of N-doped GQDs was obtained using CA as a carbon source and ethylene diamine as a N source. The obtained N-doped GQDs exhibit an excitation-independent blue emission with single exponential lifetime decay.

6.
ACS Nano ; 8(1): 827-33, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24351056

RESUMO

We report the synthesis of hierarchical structured nanocrystals through an interfacial self-assembly driven microemulsion (µ-emulsion) process. An optically active macrocyclic building block Sn (IV) meso-tetraphenylporphine dichloride (tin porphyrin) is used to initiate noncovalent self-assembly confined within µ-emulsion droplets. In-situ studies of dynamic light scattering, UV-vis spectroscopy, and electron microscopy, as well as optical imaging of reaction processes suggest an evaporation-induced nucleation and growth self-assembly mechanism. The resulted nanocrystals exhibit uniform shapes and sizes from ten to a hundred nanometers. Because of the spatial ordering of tin porphyrin, the hierarchical nanocrystals exhibit collective optical properties resulting from the coupling of molecular tin porphyrin and photocatalytic activities in the reduction of platinum nanoparticles and networks and in photodegradation of methyl orange (MO) pollutants.

7.
Nano Lett ; 11(12): 5196-200, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22082076

RESUMO

We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., π-π stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Nanofios/química , Porfirinas/química , Zinco/química , Nanotecnologia/economia , Nanotubos/ultraestrutura , Nanofios/ultraestrutura , Porosidade , Análise Espectral , Tensoativos/química
8.
Nano Lett ; 11(9): 3759-62, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21853999

RESUMO

Hollow metallic nanostructures exhibit important applications in catalysis, sensing, and phototherapy due to their increased surface areas, reduced densities, and unique optical and electronic features. Here we report a facile photocatalytic process to synthesize and tune hollow platinum (Pt) nanostructures. Through hierarchically structured templates, well-defined hollow Pt nanostructures are achieved. These nanostructures possess interconnected nanoporous framework as shell with high surface area for enhanced catalytic performance/mass transport for methanol oxidation.


Assuntos
Metanol/química , Nanoestruturas/química , Oxigênio/química , Fotoquímica/métodos , Adsorção , Catálise , Hidrogênio/química , Nanopartículas Metálicas/química , Microscopia Eletrônica/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/métodos , Platina/química , Porfirinas/química , Difração de Raios X
9.
J Am Chem Soc ; 132(37): 12826-8, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20804208

RESUMO

We have demonstrated pressure-directed assembly for preparation of a new class of chemically and mechanically stable gold nanostructures through high pressure-driven sintering of nanoparticle assemblies at room temperature. We show that under a hydrostatic pressure field, the unit cell dimension of a 3D ordered nanoparticle array can be reversibly manipulated allowing fine-tuning of the interparticle separation distance. In addition, 3D nanostructured gold architecture can be formed through high pressure-induced nanoparticle sintering. This work opens a new pathway for engineering and fabrication of different metal nanostructured architectures.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas/química , Nanotecnologia/instrumentação , Pressão , Modelos Moleculares , Conformação Molecular , Nanotecnologia/métodos , Temperatura
11.
Chem Commun (Camb) ; 46(27): 4941-3, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20517568

RESUMO

We report a facile solution process to synthesize monodisperse porous nanodiscs through confined molecular self-assembly of surfactants and ZnTPyP. The nanodiscs exhibit trimodal pores with fluorescent and crystalline wall structures, and are potentially important for sorption and separation, sensors, catalytic materials, electrode materials, etc.


Assuntos
Corantes Fluorescentes/química , Nanoestruturas/química , Complexos de Coordenação/química , Nanoestruturas/ultraestrutura , Porosidade , Tensoativos/química , Zinco/química
12.
Biochemistry ; 45(9): 2904-12, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16503645

RESUMO

Binding of porphyrin to murine ferrochelatase, the terminal enzyme of the heme biosynthetic pathway, is investigated by employing a set of variants harboring mutations in a putative porphyrin-binding loop. Using resonance Raman (RR) spectroscopy, the structural properties of the ferrochelatase-bound porphyrins are examined, especially with respect to the porphyrin deformation occurring in the environment of the active site. This deformation is thought to be a key step in the enzymatic insertion of ferrous iron into the porphyrin ring to make heme. Our previous RR spectroscopic studies of binding of porphyrin to murine ferrochelatase led us to propose that the wild-type enzyme induces porphyrin distortion even in the absence of the metal ion substrate. Here, we broaden this view by presenting evidence that the degree of a specific nonplanar porphyrin deformation contributes to the catalytic efficiency of ferrochelatase and its variants. The results also suggest that the conserved Trp256 (murine ferrochelatase numbering) is partially responsible for the observed porphyrin deformation. Binding of porphyrin to the ferrochelatase variants causes a decrease in the intensity of RR out-of-plane vibrational mode gamma(15), a saddling-like mode that is strong in the wild-type enzyme. In particular, the variant with a catalytic efficiency 1 order of magnitude lower than that of the wild-type enzyme is estimated to produce less than 30% of the wild-type saddling deformation. These results suggest that specific conserved loop residues (especially Trp256) are directly involved in the saddling of the porphyrin substrate.


Assuntos
Ferroquelatase/metabolismo , Porfirinas/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Catálise , Sequência Conservada , Ferroquelatase/genética , Hemina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Porfirinas/metabolismo , Ligação Proteica , Conformação Proteica , Protoporfirinas/química , Protoporfirinas/metabolismo , Análise Espectral Raman , Triptofano/metabolismo
13.
J Am Chem Soc ; 127(4): 1179-92, 2005 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-15669857

RESUMO

The effects of ruffling on the axial ligation properties of a series of nickel(II) tetra(alkyl)porphyrins have been investigated with UV-visible absorption spectroscopy, resonance Raman spectroscopy, X-ray crystallography, classical molecular mechanics calculations, and normal-coordinate structural decomposition analysis. For the modestly nonplanar porphyrins, porphyrin ruffling is found to cause a decrease in binding affinity for pyrrolidine and piperidine, mainly caused by a decrease in the binding constant for addition of the first axial ligand; ligand binding is completely inhibited for the more nonplanar porphyrins. The lowered affinity, resulting from the large energies required to expand the core and flatten the porphyrin to accommodate the large high-spin nickel(II) ion, has implications for nickel porphyrin-based molecular devices and the function of heme proteins and methyl-coenzyme M reductase.


Assuntos
Metaloporfirinas/química , Níquel/química , Cristalografia por Raios X , Heme/química , Ligantes , Modelos Moleculares , Conformação Molecular , Oxirredutases/química , Espectrofotometria Ultravioleta , Análise Espectral Raman , Termodinâmica
14.
Inorg Chem ; 42(7): 2227-41, 2003 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-12665356

RESUMO

Previous studies of 5,10,15,20-tetraarylporphyrins have shown that the barrier for meso aryl-porphyrin rotation (DeltaG++(ROT)) varies as a function of the core substituent M and is lower for a small metal (M = Ni) compared to a large metal (M = Zn) and for a dication (M = 4H(2+)) versus a free base porphyrin (M = 2H). This has been attributed to changes in the nonplanar distortion of the porphyrin ring and the deformability of the macrocycle caused by the core substituent. In the present work, X-ray crystallography, molecular mechanics (MM) calculations, and variable temperature (VT) (1)H NMR spectroscopy are used to examine the relationship between the aryl-porphyrin rotational barrier and the core substituent M in some novel 2,3,5,7,8,10,12,13,15,17,18,20-dodecaarylporphyrins (DArPs), and specifically in some 5,10,15,20-tetraaryl-2,3,7,8,12,13,17,18-octaphenylporphyrins (TArOPPs), where steric crowding of the peripheral groups always results in a very nonplanar macrocycle. X-ray structures of DArPs indicate differences in the nonplanar conformation of the macrocycle as a function of M, with saddle conformations being observed for M = Zn, 2H or M = 4H(2+) and saddle and/or ruffle conformations for M = Ni. VT NMR studies show that the effect of protonation in the TArOPPs is to increase DeltaG++(ROT), which is the opposite of the effect seen for the TArPs, and MM calculations also predict a strikingly high barrier for the TArOPPs when M = 4H(2+). These and other findings suggest that the aryl-porphyrin rotational barriers in the DArPs are closely linked to the deformability of the macrocycle along a nonplanar distortion mode which moves the substituent being rotated out of the porphyrin plane.


Assuntos
Modelos Moleculares , Porfirinas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Metaloporfirinas/química , Conformação Molecular , Estrutura Molecular , Termodinâmica
15.
J Am Chem Soc ; 125(5): 1253-68, 2003 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-12553827

RESUMO

The view that the large red shifts seen in the UV-visible absorption bands of peripherally crowded nonplanar porphyrins are the result of nonplanar deformations of the macrocycle has recently been challenged by the suggestion that the red shifts arise from substituent-induced changes in the macrocycle bond lengths and bond angles, termed in-plane nuclear reorganization (IPNR). We have analyzed the contributions to the UV-visible band shifts in a series of nickel or zinc meso-tetraalkylporphyrins to establish the origins of the red shifts in these ruffled porphyrins. Structures were obtained using a molecular mechanics force field optimized for porphyrins, and the nonplanar deformations were quantified by using normal-coordinate structural decomposition (NSD). Transition energies were calculated by the INDO/S semiempirical method. These computational studies demonstrate conclusively that the large Soret band red shifts ( approximately 40 nm) seen for very nonplanar meso-tetra(tert-butyl)porphyrin compared to meso-tetra(methyl)porphyrin are primarily the result of nonplanar deformations and not IPNR. Strikingly, nonplanar deformations along the high-frequency 2B(1u) and 3B(1u) normal coordinates of the macrocycle are shown to contribute significantly to the observed red shifts, even though these deformations are an order of magnitude smaller than the observed ruffling (1B(1u)) deformation. Other structural and electronic influences on the UV-visible band shifts are discussed and problems with the recent studies are examined (e.g., the systematic underestimation of the 2B(1u) and 3B(1u) modes in artificially constrained porphyrin structures that leads to a mistaken attribution of the red shift to IPNR). The effect of nonplanar deformations on the UV-visible absorption bands is then probed experimentally with a series of novel bridled nickel chiroporphyrins. In these compounds, the substituent effect is essentially invariant and the amount of nonplanar deformation decreases as the length of the straps connecting adjacent meso-cyclopropyl substituents decreases (the opposite of the effect observed for conventional strapped porphyrins). Several spectroscopic markers for nonplanarity (UV-visible bands, resonance Raman lines, and (1)H NMR resonances) are found to correlate with time-averaged deformations obtained from an NSD analysis of molecular dynamics snapshot structures. These results suggest that UV-visible band shifts of tetrapyrroles in proteins are potentially useful indicators of changes in nonplanarity provided other structural and electronic factors can be eliminated.

16.
J Am Chem Soc ; 125(5): 1269-77, 2003 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-12553828

RESUMO

Conjugated polymer/silica nanocomposites with hexagonal, cubic, or lamellar mesoscopic order were synthesized by self-assembly using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. By tailoring the size of the oligo(ethylene glycol) headgroup of the diacetylene-containing surfactant, we varied the resulting self-assembled mesophases of the composite material. The nanostructured inorganic host altered the diacetylene polymerization behavior, and the resulting nanocomposites show unique thermo-, mechano-, and solvatochromic properties. Polymerization of the incorporated surfactants resulted in polydiacetylene (PDA)/silica nanocomposites that were optically transparent and mechanically robust. Molecular modeling and quantum calculations and (13)C spin-lattice relaxation times (T(1)) of the PDA/silica nanocomposites indicated that the surfactant monomers can be uniformly organized into precise spatial arrangements prior to polymerization. Nanoindentation and gas transport experiments showed that these nanocomposite films have increased hardness and reduced permeability as compared to pure PDA. Our work demonstrates polymerizable surfactant/silica self-assembly to be an efficient, general approach to the formation of nanostructured conjugated polymers. The nanostructured inorganic framework serves to protect, stabilize, and orient the polymer, mediate its performance, and provide sufficient mechanical and chemical stability to enable integration of conjugated polymers into devices and microsystems.


Assuntos
Acetileno/análogos & derivados , Acetileno/síntese química , Teste de Materiais , Nanotecnologia , Polímeros/síntese química , Ácido Silícico/química , Tensoativos/química , Acetileno/química , Força Compressiva , Modelos Moleculares , Método de Monte Carlo , Polímero Poliacetilênico , Polímeros/química , Poli-Inos , Teoria Quântica , Solventes , Raios Ultravioleta , Difração de Raios X
17.
J Am Chem Soc ; 124(13): 3385-94, 2002 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-11916424

RESUMO

We have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxymyoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180 degrees rotation around the alpha-gamma axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decomposition and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the hemes in orientations A and B. Our results suggest that the binding site prefers a particular macrocycle conformation, and a 180 degrees rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruffling deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.


Assuntos
Heme/química , Mioglobina/química , Baleias , Animais , Simulação por Computador , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...