Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36900889

RESUMO

Sensor-based human activity recognition (HAR) is a method for observing a person's activity in an environment. With this method, it is possible to monitor remotely. HAR can analyze a person's gait, whether normal or abnormal. Some of its applications may use several sensors mounted on the body, but this method tends to be complex and inconvenient. One alternative to wearable sensors is using video. One of the most commonly used HAR platforms is PoseNET. PoseNET is a sophisticated platform that can detect the skeleton and joints of the body, which are then known as joints. However, a method is still needed to process the raw data from PoseNET to detect subject activity. Therefore, this research proposes a way to detect abnormalities in gait using empirical mode decomposition and the Hilbert spectrum and transforming keys-joints, and skeletons from vision-based pose detection into the angular displacement of walking gait patterns (signals). Joint change information is extracted using the Hilbert Huang Transform to study how the subject behaves in the turning position. Furthermore, it is determined whether the transition goes from normal to abnormal subjects by calculating the energy in the time-frequency domain signal. The test results show that during the transition period, the energy of the gait signal tends to be higher than during the walking period.


Assuntos
Marcha , Processamento de Sinais Assistido por Computador , Humanos , Caminhada , Atividades Humanas
2.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850499

RESUMO

Dementia is a term that represents a set of symptoms that affect the ability of the brain's cognitive functions related to memory, thinking, behavior, and language. At worst, dementia is often called a major neurocognitive disorder or senile disease. One of the most common types of dementia after Alzheimer's is vascular dementia. Vascular dementia is closely related to cerebrovascular disease, one of which is stroke. Post-stroke patients with recurrent onset have the potential to develop dementia. An accurate diagnosis is needed for proper therapy management to ensure the patient's quality of life and prevent it from worsening. The gold standard diagnostic of vascular dementia is complex, includes psychological tests, complete memory tests, and is evidenced by medical imaging of brain lesions. However, brain imaging methods such as CT-Scan, PET-Scan, and MRI have high costs and cannot be routinely used in a short period. For more than two decades, electroencephalogram signal analysis has been an alternative in assisting the diagnosis of brain diseases associated with cognitive decline. Traditional EEG analysis performs visual observations of signals, including rhythm, power, and spikes. Of course, it requires a clinician expert, time consumption, and high costs. Therefore, a quantitative EEG method for identifying vascular dementia in post-stroke patients is discussed in this study. This study used 19 EEG channels recorded from normal elderly, post-stroke with mild cognitive impairment, and post-stroke with dementia. The QEEG method used for feature extraction includes relative power, coherence, and signal complexity; the evaluation performance of normal-mild cognitive impairment-dementia classification was conducted using Support Vector Machine and K-Nearest Neighbor. The results of the classification simulation showed the highest accuracy of 96% by Gaussian SVM with a sensitivity and specificity of 95.6% and 97.9%, respectively. This study is expected to be an additional criterion in the diagnosis of dementia, especially in post-stroke patients.


Assuntos
Demência Vascular , Demência , Acidente Vascular Cerebral , Idoso , Humanos , Demência Vascular/diagnóstico , Qualidade de Vida , Eletroencefalografia
3.
J Healthc Eng ; 2022: 5666229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36444210

RESUMO

One common type of vascular dementia (VaD) is poststroke dementia (PSD). Vascular dementia can occur in one-third of stroke patients. The worsening of cognitive function can occur quickly if not detected and treated early. One of the potential medical modalities for observing this disorder by considering costs and safety factors is electroencephalogram (EEG). It is thought that there are differences in the spectral dynamics of the EEG signal between the normal group and stroke patients with cognitive impairment so that it can be used in detection. Therefore, this study proposes an EEG signal characterization method using EEG spectral power complexity measurements to obtain features of poststroke patients with cognitive impairment and normal subjects. Working memory EEGs were collected and analyzed from forty-two participants, consisting of sixteen normal subjects, fifteen poststroke patients with mild cognitive impairment, and eleven poststroke patients with dementia. From the analysis results, it was found that there were differences in the dynamics of the power spectral in each group, where the spectral power of the cognitively impaired group was more regular than the normal group. Notably, (1) significant differences in spectral entropy (SpecEn) with a p value <0.05 were found for all electrodes, (2) there was a relationship between SpecEn values and the severity of dementia (SpecEnDem < SpecEnMCI < SpecEnNormal), and (3) a post hoc multiple comparison test showed significant differences between groups at the F7 electrode. This study shows that spectral complexity analysis can discriminate between normal and poststroke patients with cognitive impairment. For further studies, it is necessary to simulate performance validation so that the proposed approach can be used in the early detection of poststroke dementia and monitoring the development of dementia.


Assuntos
Disfunção Cognitiva , Demência Vascular , Acidente Vascular Cerebral , Humanos , Demência Vascular/diagnóstico , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Diagnóstico Precoce , Eletroencefalografia , Acidente Vascular Cerebral/complicações
4.
J Med Signals Sens ; 12(3): 192-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120404

RESUMO

Background: Photoplethysmography (PPG) contains information about the health condition of the heart and blood vessels. Cardiovascular system modeling using PPG signal measurements can represent, analyze, and predict the cardiovascular system. Methods: This study aims to make a cardiovascular system model using a Windkessel model by dividing the blood vessels into seven segments. This process involves the PPG signal of the fingertips and toes for further analysis to obtain the condition of the elasticity of the blood vessels as the main parameter. The method is to find the Resistance, Inductance, and Capacitance (RLC) value of each segment of the body through the equivalent equation between the electronic unit and the cardiovascular unit. The modeling made is focused on PPG parameters in the form of stiffness index, the time delay (△t), and augmentation index. Results: The results of the model simulation using PSpice were then compared with the results of measuring the PPG signal to analyze changes in the behavior of the PPG signal taken from ten healthy people with an average age of 46 years, compared to ten cardiac patients with an average age of 48 years. It is found that decreasing 20% of capacitance value and the arterial stiffness parameter will close to cardiac patients' data. Compared with the measurement results, the correlation of the PPG signal in the simulation model is more than 0.9. Conclusions: The proposed model is expected to be used in the early detection of arterial stiffness. It can also be used to study the dynamics of the cardiovascular system, including changes in blood flow velocity and blood pressure.

5.
J Med Signals Sens ; 12(4): 278-284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726419

RESUMO

Background: Lung cancer images require large memory storage and transmission bandwidth for sending the data. Compressive sensing (CS), as a method with a statistical approach in signal sampling, provides different output patterns based on information sources. Thus, it can be considered that CS can be used for feature extraction of compressed information. Methods: In this study, we proposed a novel texture extraction-based CS for lung cancer classification. We classify three types of lung cancer, including adenocarcinoma (ACA), squamous cell carcinoma (SCC), and benign lung cancer (N). The classification is carried out based on texture extraction, which is processed in 2 stages, the first stage to detect N and the second to detect ACA and SCC. Results: The simulation results show that two-stage texture extraction can improve accuracy by an average of 84%. The proposed system is expected to be decision support in assisting clinical diagnosis. In terms of technical storage, this system can save memory resources. Conclusions: The proposed two-step texture extraction system combined with CS and K- Nearest Neighbor has succeeded in classifying lung cancer with high accuracy; the system can also save memory storage. It is necessary to examine the complexity of the proposed method so that it can be analyzed further.

6.
J Med Signals Sens ; 11(3): 208-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466400

RESUMO

BACKGROUND: One of the vital organs that require regular check is heart. The representation of heart health can be identified through electrocardiogram (ECG) signals, blood pressure (BP), heart rate, and oxygen saturation (SpO2). Monitoring the heart condition needs to be regularly done to prevent heart attack that can occur suddenly and very quickly particularly for someone who has had a heart attack before. Nevertheless, it raises the problem of cost, time efficient, and flexibility. It takes a high cost and much time to perform this examination. A vital signal monitoring device is needed with low cost, wearable, accurate, and simple in use. METHODS: This research designs and develops a device and application for monitoring human vital signals including ECG, SpO2, BP, and heart rate. A multi-sensor system with a control unit was applied to the device which was then called the Armband Vital Sign Monitor. This device can be used to measure vital parameters simultaneously using multiplexing techniques programmed in the microcontroller. Armband vital sign monitor is also equipped with Bluetooth module as a communication media for further data processing and display. RESULTS: Armband vital sign monitor produces >99% accuracy in body temperature measurements, ±2 deviation values in SpO2 measurements, and systolic and diastolic deviations at ±3-8 mmHg. For EGC signals, tests are performed by comparing signals visually in graphical form, and EGC can be obtained properly as shown by the graph. CONCLUSION: In this study, an Armband vital sign device has been developed that can measure the body's vital parameters. The parameters which were measured included temperature, heart rate, BP, SpO2, and ECG. This device has small dimensions and can be put on the wrist. The device is also equipped with Bluetooth so monitoring can be conducted wirelessly.

7.
ScientificWorldJournal ; 2018: 8463256, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279635

RESUMO

Epilepsy is a disorder of the brain's nerves as a result of excessive brain cell activity. It is generally characterized by the recurrent unprovoked seizures. This neurological abnormality can be detected and evaluated using Electroencephalogram (EEG) signal. Many algorithms have been applied to achieve high performance for the EEG classification of epileptic. However, the complexity and randomness of EEG signals become a challenge to researchers in applying the appropriate algorithms. In this research, sample entropy on Multidistance Signal Level Difference (MSLD) was applied to obtain the characteristic of EEG signals, especially towards the epilepsy patients. The test was performed on three classes of EEG data: EEG signals of epilepsy patient in ictal (seizure), interictal conditions (occurring between seizures) and normal EEG signals from healthy subjects with a closed eye condition. In this study, classification and verification were done using the Support Vector Machine (SVM) method. Through the 5-fold cross-validation, experimental results showed the highest accuracy of 97.7%.


Assuntos
Eletroencefalografia/classificação , Entropia , Epilepsia/classificação , Máquina de Vetores de Suporte/classificação , Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA