Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
BJR Artif Intell ; 1(1): ubae003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38476957

RESUMO

The adoption of artificial intelligence (AI) tools in medicine poses challenges to existing clinical workflows. This commentary discusses the necessity of context-specific quality assurance (QA), emphasizing the need for robust QA measures with quality control (QC) procedures that encompass (1) acceptance testing (AT) before clinical use, (2) continuous QC monitoring, and (3) adequate user training. The discussion also covers essential components of AT and QA, illustrated with real-world examples. We also highlight what we see as the shared responsibility of manufacturers or vendors, regulators, healthcare systems, medical physicists, and clinicians to enact appropriate testing and oversight to ensure a safe and equitable transformation of medicine through AI.

2.
Diagnostics (Basel) ; 14(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38337857

RESUMO

The diagnosis of severe COVID-19 lung infection is important because it carries a higher risk for the patient and requires prompt treatment with oxygen therapy and hospitalization while those with less severe lung infection often stay on observation. Also, severe infections are more likely to have long-standing residual changes in their lungs and may need follow-up imaging. We have developed deep learning neural network models for classifying severe vs. non-severe lung infections in COVID-19 patients on chest radiographs (CXR). A deep learning U-Net model was developed to segment the lungs. Inception-v1 and Inception-v4 models were trained for the classification of severe vs. non-severe COVID-19 infection. Four CXR datasets from multi-country and multi-institutional sources were used to develop and evaluate the models. The combined dataset consisted of 5748 cases and 6193 CXR images with physicians' severity ratings as reference standard. The area under the receiver operating characteristic curve (AUC) was used to evaluate model performance. We studied the reproducibility of classification performance using the different combinations of training and validation data sets. We also evaluated the generalizability of the trained deep learning models using both independent internal and external test sets. The Inception-v1 based models achieved AUC ranging between 0.81 ± 0.02 and 0.84 ± 0.0, while the Inception-v4 models achieved AUC in the range of 0.85 ± 0.06 and 0.89 ± 0.01, on the independent test sets, respectively. These results demonstrate the promise of using deep learning models in differentiating COVID-19 patients with severe from non-severe lung infection on chest radiographs.

4.
Cancers (Basel) ; 15(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38001728

RESUMO

This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.

5.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686647

RESUMO

Accurate survival prediction for bladder cancer patients who have undergone radical cystectomy can improve their treatment management. However, the existing predictive models do not take advantage of both clinical and radiological imaging data. This study aimed to fill this gap by developing an approach that leverages the strengths of clinical (C), radiomics (R), and deep-learning (D) descriptors to improve survival prediction. The dataset comprised 163 patients, including clinical, histopathological information, and CT urography scans. The data were divided by patient into training, validation, and test sets. We analyzed the clinical data by a nomogram and the image data by radiomics and deep-learning models. The descriptors were input into a BPNN model for survival prediction. The AUCs on the test set were (C): 0.82 ± 0.06, (R): 0.73 ± 0.07, (D): 0.71 ± 0.07, (CR): 0.86 ± 0.05, (CD): 0.86 ± 0.05, and (CRD): 0.87 ± 0.05. The predictions based on D and CRD descriptors showed a significant difference (p = 0.007). For Kaplan-Meier survival analysis, the deceased and alive groups were stratified successfully by C (p < 0.001) and CRD (p < 0.001), with CRD predicting the alive group more accurately. The results highlight the potential of combining C, R, and D descriptors to accurately predict the survival of bladder cancer patients after cystectomy.

6.
Br J Radiol ; 96(1150): 20221152, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698542

RESUMO

Artificial intelligence (AI), in one form or another, has been a part of medical imaging for decades. The recent evolution of AI into approaches such as deep learning has dramatically accelerated the application of AI across a wide range of radiologic settings. Despite the promises of AI, developers and users of AI technology must be fully aware of its potential biases and pitfalls, and this knowledge must be incorporated throughout the AI system development pipeline that involves training, validation, and testing. Grand challenges offer an opportunity to advance the development of AI methods for targeted applications and provide a mechanism for both directing and facilitating the development of AI systems. In the process, a grand challenge centralizes (with the challenge organizers) the burden of providing a valid benchmark test set to assess performance and generalizability of participants' models and the collection and curation of image metadata, clinical/demographic information, and the required reference standard. The most relevant grand challenges are those designed to maximize the open-science nature of the competition, with code and trained models deposited for future public access. The ultimate goal of AI grand challenges is to foster the translation of AI systems from competition to research benefit and patient care. Rather than reference the many medical imaging grand challenges that have been organized by groups such as MICCAI, RSNA, AAPM, and grand-challenge.org, this review assesses the role of grand challenges in promoting AI technologies for research advancement and for eventual clinical implementation, including their promises and limitations.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Diagnóstico por Imagem , Assistência ao Paciente
7.
J Clin Endocrinol Metab ; 108(12): 3122-3134, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390454

RESUMO

CONTEXT: Inhibition of the neonatal fragment crystallizable receptor (FcRn) reduces pathogenic thyrotropin receptor antibodies (TSH-R-Ab) that drive pathology in thyroid eye disease (TED). OBJECTIVE: We report the first clinical studies of an FcRn inhibitor, batoclimab, in TED. DESIGN: Proof-of-concept (POC) and randomized, double-blind placebo-controlled trials. SETTING: Multicenter. PARTICIPANTS: Patients with moderate-to-severe, active TED. INTERVENTION: In the POC trial, patients received weekly subcutaneous injections of batoclimab 680 mg for 2 weeks, followed by 340 mg for 4 weeks. In the double-blind trial, patients were randomized 2:2:1:2 to weekly batoclimab (680 mg, 340 mg, 255 mg) or placebo for 12 weeks. MAIN OUTCOME: Change from baseline in serum anti-TSH-R-Ab and total IgG (POC); 12-week proptosis response (randomized trial). RESULTS: The randomized trial was terminated because of an unanticipated increase in serum cholesterol; therefore, data from 65 of the planned 77 patients were analyzed. Both trials showed marked decreases in pathogenic anti-TSH-R-Ab and total IgG serum levels (P < .001) with batoclimab. In the randomized trial, there was no statistically significant difference with batoclimab vs placebo in proptosis response at 12 weeks, although significant differences were observed at several earlier timepoints. In addition, orbital muscle volume decreased (P < .03) at 12 weeks, whereas quality of life (appearance subscale) improved (P < .03) at 19 weeks in the 680-mg group. Batoclimab was generally well tolerated, with albumin reductions and increases in lipids that reversed upon discontinuation. CONCLUSIONS: These results provide insight into the efficacy and safety of batoclimab and support its further investigation as a potential therapy for TED.


Assuntos
Exoftalmia , Oftalmopatia de Graves , Recém-Nascido , Humanos , Oftalmopatia de Graves/tratamento farmacológico , Qualidade de Vida , Anticorpos Monoclonais/uso terapêutico , Imunoglobulina G/uso terapêutico , Método Duplo-Cego , Resultado do Tratamento
8.
Med Phys ; 50(10): 6177-6189, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37145996

RESUMO

BACKGROUND: The noise in digital breast tomosynthesis (DBT) includes x-ray quantum noise and detector readout noise. The total radiation dose of a DBT scan is kept at about the level of a digital mammogram but the detector noise is increased due to acquisition of multiple projections. The high noise can degrade the detectability of subtle lesions, specifically microcalcifications (MCs). PURPOSE: We previously developed a deep-learning-based denoiser to improve the image quality of DBT. In the current study, we conducted an observer performance study with breast radiologists to investigate the feasibility of using deep-learning-based denoising to improve the detection of MCs in DBT. METHODS: We have a modular breast phantom set containing seven 1-cm-thick heterogeneous 50% adipose/50% fibroglandular slabs custom-made by CIRS, Inc. (Norfolk, VA). We made six 5-cm-thick breast phantoms embedded with 144 simulated MC clusters of four nominal speck sizes (0.125-0.150, 0.150-0.180, 0.180-0.212, 0.212-0.250 mm) at random locations. The phantoms were imaged with a GE Pristina DBT system using the automatic standard (STD) mode. The phantoms were also imaged with the STD+ mode that increased the average glandular dose by 54% to be used as a reference condition for comparison of radiologists' reading. Our previously trained and validated denoiser was deployed to the STD images to obtain a denoised DBT set (dnSTD). Seven breast radiologists participated as readers to detect the MCs in the DBT volumes of the six phantoms under the three conditions (STD, STD+, dnSTD), totaling 18 DBT volumes. Each radiologist read all the 18 DBT volumes sequentially, which were arranged in a different order for each reader in a counter-balanced manner to minimize any potential reading order effects. They marked the location of each detected MC cluster and provided a conspicuity rating and their confidence level for the perceived cluster. The visual grading characteristics (VGC) analysis was used to compare the conspicuity ratings and the confidence levels of the radiologists for the detection of MCs. RESULTS: The average sensitivities over all MC speck sizes were 65.3%, 73.2%, and 72.3%, respectively, for the radiologists reading the STD, dnSTD, and STD+ volumes. The sensitivity for dnSTD was significantly higher than that for STD (p < 0.005, two-tailed Wilcoxon signed rank test) and comparable to that for STD+. The average false positive rates were 3.9 ± 4.6, 2.8 ± 3.7, and 2.7 ± 3.9 marks per DBT volume, respectively, for reading the STD, dnSTD, and STD+ images but the difference between dnSTD and STD or STD+ did not reach statistical significance. The overall conspicuity ratings and confidence levels by VGC analysis for dnSTD were significantly higher than those for both STD and STD+ (p ≤ 0.001). The critical alpha value for significance was adjusted to be 0.025 with Bonferroni correction. CONCLUSIONS: This observer study using breast phantom images showed that deep-learning-based denoising has the potential to improve the detection of MCs in noisy DBT images and increase radiologists' confidence in differentiating noise from MCs without increasing radiation dose. Further studies are needed to evaluate the generalizability of these results to the wide range of DBTs from human subjects and patient populations in clinical settings.


Assuntos
Doenças Mamárias , Calcinose , Mamografia , Feminino , Humanos , Mama/diagnóstico por imagem , Mama/patologia , Doenças Mamárias/diagnóstico por imagem , Doenças Mamárias/patologia , Calcinose/diagnóstico por imagem , Calcinose/patologia , Aprendizado Profundo , Mamografia/métodos , Imagens de Fantasmas
9.
Tomography ; 9(2): 589-602, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36961007

RESUMO

A murine model of myelofibrosis in tibia was used in a co-clinical trial to evaluate segmentation methods for application of image-based biomarkers to assess disease status. The dataset (32 mice with 157 3D MRI scans including 49 test-retest pairs scanned on consecutive days) was split into approximately 70% training, 10% validation, and 20% test subsets. Two expert annotators (EA1 and EA2) performed manual segmentations of the mouse tibia (EA1: all data; EA2: test and validation). Attention U-net (A-U-net) model performance was assessed for accuracy with respect to EA1 reference using the average Jaccard index (AJI), volume intersection ratio (AVI), volume error (AVE), and Hausdorff distance (AHD) for four training scenarios: full training, two half-splits, and a single-mouse subsets. The repeatability of computer versus expert segmentations for tibia volume of test-retest pairs was assessed by within-subject coefficient of variance (%wCV). A-U-net models trained on full and half-split training sets achieved similar average accuracy (with respect to EA1 annotations) for test set: AJI = 83-84%, AVI = 89-90%, AVE = 2-3%, and AHD = 0.5 mm-0.7 mm, exceeding EA2 accuracy: AJ = 81%, AVI = 83%, AVE = 14%, and AHD = 0.3 mm. The A-U-net model repeatability wCV [95% CI]: 3 [2, 5]% was notably better than that of expert annotators EA1: 5 [4, 9]% and EA2: 8 [6, 13]%. The developed deep learning model effectively automates murine bone marrow segmentation with accuracy comparable to human annotators and substantially improved repeatability.


Assuntos
Aprendizado Profundo , Mielofibrose Primária , Humanos , Animais , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Mielofibrose Primária/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
10.
JAMA Netw Open ; 6(2): e230524, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821110

RESUMO

Importance: An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide. Objectives: To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods. Design, Setting, and Participants: This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021. Main Outcomes and Measures: The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes. Results: A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926. Conclusions and Relevance: In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Benchmarking , Mamografia/métodos , Algoritmos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Neoplasias da Mama/diagnóstico por imagem
11.
Med Phys ; 50(2): e1-e24, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565447

RESUMO

Rapid advances in artificial intelligence (AI) and machine learning, and specifically in deep learning (DL) techniques, have enabled broad application of these methods in health care. The promise of the DL approach has spurred further interest in computer-aided diagnosis (CAD) development and applications using both "traditional" machine learning methods and newer DL-based methods. We use the term CAD-AI to refer to this expanded clinical decision support environment that uses traditional and DL-based AI methods. Numerous studies have been published to date on the development of machine learning tools for computer-aided, or AI-assisted, clinical tasks. However, most of these machine learning models are not ready for clinical deployment. It is of paramount importance to ensure that a clinical decision support tool undergoes proper training and rigorous validation of its generalizability and robustness before adoption for patient care in the clinic. To address these important issues, the American Association of Physicists in Medicine (AAPM) Computer-Aided Image Analysis Subcommittee (CADSC) is charged, in part, to develop recommendations on practices and standards for the development and performance assessment of computer-aided decision support systems. The committee has previously published two opinion papers on the evaluation of CAD systems and issues associated with user training and quality assurance of these systems in the clinic. With machine learning techniques continuing to evolve and CAD applications expanding to new stages of the patient care process, the current task group report considers the broader issues common to the development of most, if not all, CAD-AI applications and their translation from the bench to the clinic. The goal is to bring attention to the proper training and validation of machine learning algorithms that may improve their generalizability and reliability and accelerate the adoption of CAD-AI systems for clinical decision support.


Assuntos
Inteligência Artificial , Diagnóstico por Computador , Humanos , Reprodutibilidade dos Testes , Diagnóstico por Computador/métodos , Diagnóstico por Imagem , Aprendizado de Máquina
12.
Epilepsy Behav ; 134: 108858, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933959

RESUMO

PURPOSE: Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations. METHODS: Quality-screened clinical-grade MRIs were acquired from 666 patients from 2006 to 2020. Morphometric features were quantified with FreeSurfer v6. Mixed-effects linear regression compared the volume, thickness, and surface area within 201 regions-of-interest for 90 patients with FS, compared to seizure-naïve patients with depression (n = 243), anxiety (n = 68), and obsessive-compulsive disorder (OCD, n = 41), respectively, and to other seizure-naïve controls with similar quality MRIs, accounting for the influence of multiple confounds including depression and anxiety based on chart review. These comparison populations were obtained through review of clinical records plus research studies obtained on similar scanners. RESULTS: After Bonferroni-Holm correction, patients with FS compared with seizure-naïve controls exhibited thinner bilateral superior temporal cortex (left 0.053 mm, p = 0.014; right 0.071 mm, p = 0.00006), thicker left lateral occipital cortex (0.052 mm, p = 0.0035), and greater left cerebellar white-matter volume (1085 mm3, p = 0.0065). These findings were not accounted for by lower MRI quality in patients with FS. CONCLUSIONS: These results reinforce prior indications of structural neuroimaging correlates of FS and, in particular, distinguish brain morphology in FS from that in depression, anxiety, and OCD. Future work may entail comparisons with other psychiatric disorders including bipolar and schizophrenia, as well as exploration of brain structural heterogeneity within FS.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Encéfalo , Humanos , Neuroimagem , Convulsões
13.
IEEE Access ; 10: 49337-49346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665366

RESUMO

This study developed a recursive training strategy to train a deep learning model for nuclei detection and segmentation using incomplete annotation. A dataset of 141 H&E stained breast cancer pathologic images with incomplete annotation was randomly split into training/validation set and test set of 89 and 52 images, respectively. The positive training samples were extracted at each annotated cell and augmented with affine translation. The negative training samples were selected from the non-cellular regions free of nuclei using a histogram-based semi-automatic method. A U-Net model was initially trained by minimizing a custom loss function. After the first stage of training, the trained U-Net model was applied to the images in the training set in an inference mode. The U-Net segmented objects with high quality were selected by a semi-automated method. Combining the newly selected high quality objects with the annotated nuclei and the previously generated negative samples, the U-Net model was retrained recursively until the stopping criteria were satisfied. For the 52 test images, the U-Net trained with and without using our recursive training method achieved a sensitivity of 90.3% and 85.3% for nuclei detection, respectively. For nuclei segmentation, the average Dice coefficient and average Jaccard index were 0.831±0.213 and 0.750±0.217, 0.780±0.270 and 0.697±0.264, for U-Net with and without recursive training, respectively. The improvement achieved by our proposed method was statistically significant (P < 0.05). In conclusion, our recursive training method effectively enlarged the set of annotated objects for training the deep learning model and further improved the detection and segmentation performance.

14.
Med Phys ; 49(11): 7287-7302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35717560

RESUMO

OBJECTIVE: Accurate segmentation of the lung nodule in computed tomography images is a critical component of a computer-assisted lung cancer detection/diagnosis system. However, lung nodule segmentation is a challenging task due to the heterogeneity of nodules. This study is to develop a hybrid deep learning (H-DL) model for the segmentation of lung nodules with a wide variety of sizes, shapes, margins, and opacities. MATERIALS AND METHODS: A dataset collected from Lung Image Database Consortium image collection containing 847 cases with lung nodules manually annotated by at least two radiologists with nodule diameters greater than 7 mm and less than 45 mm was randomly split into 683 training/validation and 164 independent test cases. The 50% consensus consolidation of radiologists' annotation was used as the reference standard for each nodule. We designed a new H-DL model combining two deep convolutional neural networks (DCNNs) with different structures as encoders to increase the learning capabilities for the segmentation of complex lung nodules. Leveraging the basic symmetric U-shaped architecture of U-Net, we redesigned two new U-shaped deep learning (U-DL) models that were expanded to six levels of convolutional layers. One U-DL model used a shallow DCNN structure containing 16 convolutional layers adapted from the VGG-19 as the encoder, and the other used a deep DCNN structure containing 200 layers adapted from DenseNet-201 as the encoder, while the same decoder with only one convolutional layer at each level was used in both U-DL models, and we referred to them as the shallow and deep U-DL models. Finally, an ensemble layer was used to combine the two U-DL models into the H-DL model. We compared the effectiveness of the H-DL, the shallow U-DL and the deep U-DL models by deploying them separately to the test set. The accuracy of volume segmentation for each nodule was evaluated by the 3D Dice coefficient and Jaccard index (JI) relative to the reference standard. For comparison, we calculated the median and minimum of the 3D Dice and JI over the individual radiologists who segmented each nodule, referred to as M-Dice, min-Dice, M-JI, and min-JI. RESULTS: For the 164 test cases with 327 nodules, our H-DL model achieved an average 3D Dice coefficient of 0.750 ± 0.135 and an average JI of 0.617 ± 0.159. The radiologists' average M-Dice was 0.778 ± 0.102, and the average M-JI was 0.651 ± 0.127; both were significantly higher than those achieved by the H-DL model (p < 0.05). The radiologists' average min-Dice (0.685 ± 0.139) and the average min-JI (0.537 ± 0.153) were significantly lower than those achieved by the H-DL model (p < 0.05). The results indicated that the H-DL model approached the average performance of radiologists and was superior to the radiologist whose manual segmentation had the min-Dice and min-JI. Moreover, the average Dice and average JI achieved by the H-DL model were significantly higher than those achieved by the individual shallow U-DL model (Dice of 0.745 ± 0.139, JI of 0.611 ± 0.161; p < 0.05) or the individual deep U-DL model alone (Dice of 0.739 ± 0.145, JI of 0.604 ± 0.163; p < 0.05). CONCLUSION: Our newly developed H-DL model outperformed the individual shallow or deep U-DL models. The H-DL method combining multilevel features learned by both the shallow and deep DCNNs could achieve segmentation accuracy comparable to radiologists' segmentation for nodules with wide ranges of image characteristics.


Assuntos
Aprendizado Profundo , Nódulo Pulmonar Solitário , Nódulo Pulmonar Solitário/diagnóstico , Humanos
15.
Tomography ; 8(2): 644-656, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35314631

RESUMO

This observer study investigates the effect of computerized artificial intelligence (AI)-based decision support system (CDSS-T) on physicians' diagnostic accuracy in assessing bladder cancer treatment response. The performance of 17 observers was evaluated when assessing bladder cancer treatment response without and with CDSS-T using pre- and post-chemotherapy CTU scans in 123 patients having 157 pre- and post-treatment cancer pairs. The impact of cancer case difficulty, observers' clinical experience, institution affiliation, specialty, and the assessment times on the observers' diagnostic performance with and without using CDSS-T were analyzed. It was found that the average performance of the 17 observers was significantly improved (p = 0.002) when aided by the CDSS-T. The cancer case difficulty, institution affiliation, specialty, and the assessment times influenced the observers' performance without CDSS-T. The AI-based decision support system has the potential to improve the diagnostic accuracy in assessing bladder cancer treatment response and result in more consistent performance among all physicians.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Neoplasias da Bexiga Urinária , Inteligência Artificial , Humanos , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/terapia , Urografia
16.
Acad Radiol ; 29 Suppl 1: S42-S49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950384

RESUMO

OBJECTIVES: To compare radiologists' sensitivity, confidence level, and reading efficiency of detecting microcalcifications in digital breast tomosynthesis (DBT) at two clinically relevant dose levels. MATERIALS AND METHODS: Six 5-cm-thick heterogeneous breast phantoms embedded with a total of 144 simulated microcalcification clusters of four speck sizes were imaged at two dose modes by a clinical DBT system. The DBT volumes at the two dose levels were read independently by six MQSA radiologists and one fellow with 1-33 years (median 12 years) of experience in a fully-crossed counter-balanced manner. The radiologist located each potential cluster and rated its conspicuity and his/her confidence that the marked location contained a cluster. The differences in the results between the two dose modes were analyzed by two-tailed paired t-test. RESULTS: Compared to the lower-dose mode, the average glandular dose in the higher-dose mode for the 5-cm phantoms increased from 1.34 to 2.07 mGy. The detection sensitivity increased for all speck sizes and significantly for the two smaller sizes (p <0.05). An average of 13.8% fewer false positive clusters was marked. The average conspicuity rating and the radiologists' confidence level were higher for all speck sizes and reached significance (p <0.05) for the three larger sizes. The average reading time per detected cluster reduced significantly (p <0.05) by an average of 13.2%. CONCLUSION: For a 5-cm-thick breast, an increase in average glandular dose from 1.34 to 2.07 mGy for DBT imaging increased the conspicuity of microcalcifications, improved the detection sensitivity by radiologists, increased their confidence levels, reduced false positive detections, and increased the reading efficiency.


Assuntos
Neoplasias da Mama , Calcinose , Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Feminino , Humanos , Masculino , Mamografia/métodos , Imagens de Fantasmas , Radiologistas
17.
Dentomaxillofac Radiol ; 51(3): 20210363, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762512

RESUMO

OBJECTIVES: Ultrasound emerges as a complement to cone-beam computed tomography in dentistry, but struggles with artifacts like reverberation and shadowing. This study seeks to help novice users recognize soft tissue, bone, and crown of a dental sonogram, and automate soft tissue height (STH) measurement using deep learning. METHODS: In this retrospective study, 627 frames from 111 independent cine loops of mandibular and maxillary premolar and incisors collected from our porcine model (N = 8) were labeled by a reader. 274 premolar sonograms, including data augmentation, were used to train a multi class segmentation model. The model was evaluated against several test sets, including premolar of the same breed (n = 74, Yucatan) and premolar of a different breed (n = 120, Sinclair). We further proposed a rule-based algorithm to automate STH measurements using predicted segmentation masks. RESULTS: The model reached a Dice similarity coefficient of 90.7±4.39%, 89.4±4.63%, and 83.7±10.5% for soft tissue, bone, and crown segmentation, respectively on the first test set (n = 74), and 90.0±7.16%, 78.6±13.2%, and 62.6±17.7% on the second test set (n = 120). The automated STH measurements have a mean difference (95% confidence interval) of -0.22 mm (-1.4, 0.95), a limit of agreement of 1.2 mm, and a minimum ICC of 0.915 (0.857, 0.948) when compared to expert annotation. CONCLUSION: This work demonstrates the potential use of deep learning in identifying periodontal structures on sonograms and obtaining diagnostic periodontal dimensions.


Assuntos
Aprendizado Profundo , Animais , Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Suínos , Tomografia Computadorizada por Raios X , Ultrassonografia
18.
Med Phys ; 48(9): 4711-4714, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34545957

RESUMO

The Abstract is intended to provide a concise summary of the study and its scientific findings. For AI/ML applications in medical physics, a problem statement and rationale for utilizing these algorithms are necessary while highlighting the novelty of the approach. A brief numerical description of how the data are partitioned into subsets for training of the AI/ML algorithm, validation (including tuning of parameters), and independent testing of algorithm performance is required. This is to be followed by a summary of the results and statistical metrics that quantify the performance of the AI/ML algorithm.


Assuntos
Algoritmos , Inteligência Artificial , Física
19.
IEEE Trans Med Imaging ; 40(12): 3748-3761, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34264825

RESUMO

Lung cancer is by far the leading cause of cancer death in the US. Recent studies have demonstrated the effectiveness of screening using low dose CT (LDCT) in reducing lung cancer related mortality. While lung nodules are detected with a high rate of sensitivity, this exam has a low specificity rate and it is still difficult to separate benign and malignant lesions. The ISBI 2018 Lung Nodule Malignancy Prediction Challenge, developed by a team from the Quantitative Imaging Network of the National Cancer Institute, was focused on the prediction of lung nodule malignancy from two sequential LDCT screening exams using automated (non-manual) algorithms. We curated a cohort of 100 subjects who participated in the National Lung Screening Trial and had established pathological diagnoses. Data from 30 subjects were randomly selected for training and the remaining was used for testing. Participants were evaluated based on the area under the receiver operating characteristic curve (AUC) of nodule-wise malignancy scores generated by their algorithms on the test set. The challenge had 17 participants, with 11 teams submitting reports with method description, mandated by the challenge rules. Participants used quantitative methods, resulting in a reporting test AUC ranging from 0.698 to 0.913. The top five contestants used deep learning approaches, reporting an AUC between 0.87 - 0.91. The team's predictor did not achieve significant differences from each other nor from a volume change estimate (p =.05 with Bonferroni-Holm's correction).


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Algoritmos , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Curva ROC , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
20.
J Neurol Sci ; 427: 117548, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216975

RESUMO

OBJECTIVE: Functional seizures often are managed incorrectly as a diagnosis of exclusion. However, a significant minority of patients with functional seizures may have abnormalities on neuroimaging that typically are associated with epilepsy, leading to diagnostic confusion. We evaluated the rate of epilepsy-associated findings on MRI, FDG-PET, and CT in patients with functional seizures. METHODS: We studied radiologists' reports from neuroimages at our comprehensive epilepsy center from a consecutive series of patients diagnosed with functional seizures without comorbid epilepsy from 2006 to 2019. We summarized the MRI, FDG-PET, and CT results as follows: within normal limits, incidental findings, unrelated findings, non-specific abnormalities, post-operative study, epilepsy risk factors (ERF), borderline epilepsy-associated findings (EAF), and definitive EAF. RESULTS: Of the 256 MRIs, 23% demonstrated ERF (5%), borderline EAF (8%), or definitive EAF (10%). The most common EAF was hippocampal sclerosis, with the majority of borderline EAF comprising hippocampal atrophy without T2 hyperintensity or vice versa. Of the 87 FDG-PETs, 26% demonstrated borderline EAF (17%) or definitive EAF (8%). Epilepsy-associated findings primarily included focal hypometabolism, especially of the temporal lobes, with borderline findings including subtle or questionable hypometabolism. Of the 51 CTs, only 2% had definitive EAF. SIGNIFICANCE: This large case series provides further evidence that, while uncommon, EAF are seen in patients with functional seizures. A significant portion of these abnormal findings are borderline. The moderately high rate of these abnormalities may represent framing bias from the indication of the study being "seizures," the relative subtlety of EAF, or effects of antiseizure medications.


Assuntos
Epilepsia , Convulsões , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Tomografia por Emissão de Pósitrons , Convulsões/complicações , Convulsões/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...