Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(7): 5929-5936, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224353

RESUMO

Glioblastoma represents the most aggressive tumor of the central nervous system. Due to invasion of glioblastoma stem cells into the healthy tissue, chemoresistance, and recurrence of the tumor, it is difficult to successfully treat glioblastoma patients, which is demonstrated by the low life expectancy of patients after standard therapy treatment. Recently, we found that diisothiocyanate-derived mercapturic acids, which are isothiocyanate derivatives from plants of the Cruciferae family, provoked a decrease in glioblastoma cell viability. These findings were extended by combining diisothiocyanate-derived mercapturic acids with dinaciclib (a small-molecule inhibitor of cyclin-dependent kinases with anti-proliferative capacity) or temozolomide (TMZ, standard chemotherapeutic agent) to test whether the components have a cytotoxic effect on glioblastoma cells when the dosage is low. Here, we demonstrate that the combination of diisothiocyanate-derived mercapturic acids with dinaciclib or TMZ had an additive or even synergistic effect in the restriction of cell growth dependent on the combination of the components and the glioblastoma cell source. This strategy could be applied to inhibit glioblastoma cell growth as a therapeutic interference of glioblastoma.

2.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056150

RESUMO

Medulloblastoma (MB) is the most common solid tumour in children and, despite current treatment with a rather aggressive combination therapy, accounts for 10% of all deaths associated with paediatric cancer. Breaking the tumour cells' intrinsic resistance to therapy-induced cell death should lead to less aggressive and more effective treatment options. In other tumour entities, this has been achieved by modulating the balance between the various pro- and anti-apoptotic members of the Bcl-2 family with small molecule inhibitors. To evaluate the therapeutic benefits of ABT-199 (Venetoclax), a Bcl-2 inhibitor, and ABT-263 (Navitoclax), a dual Bcl-XL/Bcl-2 inhibitor, increasingly more relevant model systems were investigated. Starting from established MB cell lines, progressing to primary patient-derived material and finally an experimental tumour system imbedded in an organic environment were chosen. Assessment of the metabolic activity (a surrogate readout for population viability), the induction of DNA fragmentation (apoptosis) and changes in cell number (the combined effect of alterations in proliferation and cell death induction) revealed that ABT-263, but not ABT-199, is a promising candidate for combination therapy, synergizing with cell death-inducing stimuli. Interestingly, in the experimental tumour setting, the sensitizing effect of ABT-263 seems to be predominantly mediated via an anti-proliferative and not a pro-apoptotic effect, opening a future line of investigation. Our data show that modulation of specific members of the Bcl-2 family might be a promising therapeutic addition for the treatment of MB.

3.
Sci Rep ; 10(1): 7401, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366879

RESUMO

Glioblastoma (GB) is a highly aggressive, difficult to treat brain tumour. Successful treatment, consisting of maximal safe tumour de-bulking, followed by radiotherapy and treatment with the alkylating agent Temozolomide (TMZ), can extend patient survival to approximately 15 months. Combination treatments based on the inhibition of the PI3K pathway, which is the most frequently activated signalling cascade in GB, have so far only shown limited therapeutic success. Here, we use the clinically approved MEK inhibitor Trametinib to investigate its potential use in managing GB. Trametinib has a strong anti-proliferative effect on established GB cell lines, stem cell-like cells and their differentiated progeny and while it does not enhance anti-proliferative and cell death-inducing properties of the standard treatment, i.e. exposure to radiation or TMZ, neither does MEK inhibition block their effectiveness. However, upon MEK inhibition some cell populations appear to favour cell-substrate interactions in a sprouting assay and become more invasive in the Chorioallantoic Membrane assay, which assesses cell penetration into an organic membrane. While this increased invasion can be modulated by additional inhibition of the PI3K signalling cascade, there is no apparent benefit of blocking MEK compared to targeting PI3K.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , MAP Quinase Quinase 1/antagonistas & inibidores , Piridonas/farmacologia , Pirimidinonas/farmacologia , Temozolomida/farmacologia , Apoptose , Adesão Celular , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Membrana Corioalantoide/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...