Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 29(3): 216-228, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30409729

RESUMO

Proton radiotherapy (PT) requires accurate target alignment before each treatment fraction, ideally utilizing 3D in-room X-ray computed tomography (CT) imaging. Typically, the optimal patient position is determined based on anatomical landmarks or implanted markers. In the presence of non-rigid anatomical changes, however, the planning scenario cannot be exactly reproduced and positioning should rather aim at finding the optimal position in terms of the actually applied dose. In this work, dose-guided patient alignment, implemented as multicriterial optimization (MCO) problem, was investigated in the scope of intensity-modulated and double-scattered PT (IMPT and DSPT) for the first time. A method for automatically determining the optimal patient position with respect to pre-defined clinical goals was implemented. Linear dose interpolation was used to access a continuous space of potential patient shifts. Fourteen head and neck (H&N) and eight prostate cancer patients with up to five repeated CTs were included. Dose interpolation accuracy was evaluated and the potential dosimetric advantages of dose-guided over bony-anatomy-based patient alignment investigated by comparison of clinically relevant target and organ-at-risk (OAR) dose-volume histogram (DVH) parameters. Dose interpolation was found sufficiently accurate with average pass-rates of 90% and 99% for an exemplary H&N and prostate patient, respectively, using a 2% dose-difference criterion. Compared to bony-anatomy-based alignment, the main impact of automated MCO-based dose-guided positioning was a reduced dose to the serial OARs (spinal cord and brain stem) for the H&N cohort. For the prostate cohort, under-dosage of the target structures could be efficiently diminished. Limitations of dose-guided positioning were mainly found in reducing target over-dosage due to weight loss for H&N patients, which might require adaptation of the treatment plan. Since labor-intense online quality-assurance is not required for dose-guided patient positioning, it might, nevertheless, be considered an interesting alternative to full online re-planning for initially mitigating the effects of anatomical changes.


Assuntos
Posicionamento do Paciente/métodos , Terapia com Prótons , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada , Estudos de Coortes , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imageamento Tridimensional , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
2.
Radiother Oncol ; 125(3): 464-469, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29033253

RESUMO

BACKGROUND AND PURPOSE: Our aim was to evaluate the feasibility and potential advantages of dose guided patient positioning based on dose recalculation on scatter corrected cone beam computed tomography (CBCT) image data. MATERIAL AND METHODS: A scatter correction approach has been employed to enable dose calculations on CBCT images. A recently proposed tool for interactive multicriterial dose-guided patient positioning which uses interpolation between pre-calculated sample doses has been utilized. The workflow was retrospectively evaluated for two head and neck patients with a total of 39 CBCTs. Dose-volume histogram (DVH) parameters were compared to rigid image registration based isocenter corrections (clinical scenario). RESULTS: The accuracy of the dose interpolation was found sufficient, facilitating the implementation of dose guided patient positioning. Compared to the clinical scenario, the mean dose to the parotid glands could be improved for 2 out of 5 fractions for the first patient while other parameters were preserved. For the second patient, the mean coverage over all fractions of the high dose PTV could be improved by 4%. For this patient, coverage improvements had to be traded against organ at risk (OAR) doses within their clinical tolerance limits. CONCLUSIONS: Dose guided patient positioning using in-room CBCT data is feasible and offers increased control over target coverage and doses to OARs.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Posicionamento do Paciente , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
3.
Phys Med Biol ; 62(1): 165-185, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-27991454

RESUMO

In intensity-modulated radiation therapy (IMRT), 3D in-room imaging data is typically utilized for accurate patient alignment on the basis of anatomical landmarks. In the presence of non-rigid anatomical changes, it is often not obvious which patient position is most suitable. Thus, dose-guided patient alignment is an interesting approach to use available in-room imaging data for up-to-date dose calculation, aimed at finding the position that yields the optimal dose distribution. This contribution presents the first implementation of dose-guided patient alignment as multi-criteria optimization problem. User-defined clinical objectives are employed for setting up a multi-objective problem. Using pre-calculated dose distributions at a limited number of patient shifts and dose interpolation, a continuous space of Pareto-efficient patient shifts becomes accessible. Pareto sliders facilitate interactive browsing of the possible shifts with real-time dose display to the user. Dose interpolation accuracy is validated and the potential of multi-objective dose-guided positioning demonstrated for three head and neck (H&N) and three prostate cancer patients. Dose-guided positioning is compared to replanning for all cases. A delineated replanning CT served as surrogate for in-room imaging data. Dose interpolation accuracy was high. Using a [Formula: see text] dose difference criterion, a median pass-rate of 95.7% for H&N and 99.6% for prostate cases was determined in a comparison to exact dose calculations. For all patients, dose-guided positioning allowed to find a clinically preferable dose distribution compared to bony anatomy based alignment. For all H&N cases, mean dose to the spared parotid glands was below [Formula: see text] (up to [Formula: see text] with bony alignment) and clinical target volume (CTV) [Formula: see text] above 99.1% (compared to 95.1%). For all prostate patients, CTV [Formula: see text] was above 98.9% (compared to 88.5%) and [Formula: see text] to the rectum below [Formula: see text] (compared to 56.1%). Replanning yielded improved results for the H&N cases. For the prostate cases, differences to dose-guided positioning were minor.


Assuntos
Posicionamento do Paciente/métodos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA