Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 52: 110051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299102

RESUMO

Tricuspid valve annuloplasty is the gold standard surgical treatment for functional tricuspid valve regurgitation. During this procedure, ring-like devices are implanted to reshape the diseased tricuspid valve annulus and to restore function. For the procedure, surgeons can choose from multiple available device options varying in shape and size. In this article, we provide the three-dimensional (3D) scanned geometry (*.stl) and reduced midline (*.vtk) of five different annuloplasty devices of all commercially available sizes. Three-dimensional images were captured using a 3D scanner. After extracting the surface geometry from these images, the images were converted to 3D point clouds and skeletonized to generate a 3D midline of each device. In total, we provide 30 data sets comprising the Edwards Classic, Edwards MC3, Edwards Physio, Medtronic TriAd, and Medtronic Contour 3D of sizes 26-36. This dataset can be used in computational models of tricuspid valve annuloplasty repair to inform accurate repair geometry and boundary conditions. Additionally, others can use these data to compare and inspire new device shapes and sizes.

2.
JTCVS Open ; 17: 111-120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420560

RESUMO

Background: Tricuspid valve disease significantly affects 1.6 million Americans. The gold standard treatment for tricuspid disease is the implantation of annuloplasty devices. These ring-like devices come in various shapes and sizes. Choices for both shape and size are most often made by surgical intuition rather than scientific rationale. Methods: To understand the impact of shape and size on valve mechanics and to provide a rational basis for their selection, we used a subject-specific finite element model to conduct a virtual case study. That is, we implanted 4 different annuloplasty devices of 6 different sizes in our virtual patient. After each virtual surgery, we computed the coaptation area, leaflet end-systolic angles, leaflet stress, and chordal forces. Results: We found that contoured devices are better at normalizing end-systolic angles, whereas the one flat device, the Edwards Classic, maximized the coaptation area and minimized leaflet stress and chordal forces. We further found that reducing device size led to increased coaptation area but also negatively impacted end-systolic angles, stress, and chordal forces. Conclusions: Based on our analyses of the coaptation area, leaflet motion, leaflet stress, and chordal forces, we found that device shape and size have a significant impact on valve mechanics. Thereby, our study also demonstrates the value of simulation tools and device tests in "virtual patients." Expanding our study to many more valves may, in the future, allow for universal recommendations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA