Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(10): e2308507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145348

RESUMO

Electrode grids are used in neuroscience research and clinical practice to record electrical activity from the surface of the brain. However, existing passive electrocorticography (ECoG) technologies are unable to offer both high spatial resolution and wide cortical coverage, while ensuring a compact acquisition system. The electrode count and density are restricted by the fact that each electrode must be individually wired. This work presents an active micro-electrocorticography (µECoG) implant that tackles this limitation by incorporating metal oxide thin-film transistors (TFTs) into a flexible electrode array, allowing to address multiple electrodes through a single shared readout line. By combining the array with an incremental-ΔΣ readout integrated circuit (ROIC), the system is capable of recording from up to 256 electrodes virtually simultaneously, thanks to the implemented 16:1 time-division multiplexing scheme, offering lower noise levels than existing active µECoG arrays. In vivo validation is demonstrated acutely in mice by recording spontaneous activity and somatosensory evoked potentials over a cortical surface of ≈8×8 mm2 . The proposed neural interface overcomes the wiring bottleneck limiting ECoG arrays, holding promise as a powerful tool for improved mapping of the cerebral cortex and as an enabling technology for future brain-machine interfaces.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Animais , Camundongos , Eletrodos Implantados , Córtex Cerebral/fisiologia , Eletrocorticografia , Eletrônica
2.
Trends Neurosci ; 46(12): 1054-1066, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37925342

RESUMO

Curiosity refers to the intrinsic desire of humans and animals to explore the unknown, even when there is no apparent reason to do so. Thus far, no single, widely accepted definition or framework for curiosity has emerged, but there is growing consensus that curious behavior is not goal-directed but related to seeking or reacting to information. In this review, we take a phenomenological approach and group behavioral and neurophysiological studies which meet these criteria into three categories according to the type of information seeking observed. We then review recent computational models of curiosity from the field of machine learning and discuss how they enable integrating different types of information seeking into one theoretical framework. Combinations of behavioral and neurophysiological studies along with computational modeling will be instrumental in demystifying the notion of curiosity.


Assuntos
Comportamento Exploratório , Neurociências , Humanos , Animais , Comportamento Exploratório/fisiologia , Motivação , Simulação por Computador
3.
J Neurochem ; 158(5): 1186-1198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34338310

RESUMO

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


Assuntos
Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Córtex Olfatório/fisiologia , Fatores Etários , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Córtex Olfatório/efeitos dos fármacos , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Olfato/fisiologia
4.
Nat Protoc ; 16(7): 3322-3347, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108732

RESUMO

How dynamic activity in neural circuits gives rise to behavior is a major area of interest in neuroscience. A key experimental approach for addressing this question involves measuring extracellular neuronal activity in awake, behaving animals. Recently developed Neuropixels probes have provided a step change in recording neural activity in large tissue volumes with high spatiotemporal resolution. This protocol describes the chronic implantation of Neuropixels probes in mice and rats using compact and reusable 3D-printed fixtures. The fixtures facilitate stable chronic in vivo recordings in freely behaving rats and mice. They consist of two parts: a covered main body and a skull connector. Single-, dual- and movable-probe fixture variants are available. After completing an experiment, probes are safely recovered for reimplantation by a dedicated retrieval mechanism. Fixture assembly and surgical implantation typically take 4-5 h, and probe retrieval takes ~30 min, followed by 12 h of incubation in probe cleaning agent. The duration of data acquisition depends on the type of behavioral experiment. Since our protocol enables stable, chronic recordings over weeks, it enables longitudinal large-scale single-unit data to be routinely obtained in a cost-efficient manner, which will facilitate many studies in systems neuroscience.


Assuntos
Comportamento Animal/fisiologia , Eletrodos Implantados , Eletrofisiologia/métodos , Neurônios/fisiologia , Animais , Camundongos Endogâmicos C57BL , Impressão Tridimensional , Ratos Long-Evans , Crânio/diagnóstico por imagem , Crânio/cirurgia , Vigília/fisiologia
5.
Science ; 372(6539)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33859006

RESUMO

Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletrofisiologia/instrumentação , Microeletrodos , Neurônios/fisiologia , Potenciais de Ação , Algoritmos , Animais , Eletrofisiologia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miniaturização , Ratos
6.
Neuron ; 108(2): 228-230, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33120020

RESUMO

In this issue, Gill et al. apply holographic optogenetic stimulation in the olfactory bulb to control select neuronal ensembles in 3D. This approach allows them to dissociate the contribution of temporal spike features and spike rate to stimulus detection.


Assuntos
Bulbo Olfatório , Olfato , Neurônios , Optogenética , Tempo
7.
Neuron ; 106(1): 142-153.e7, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32027824

RESUMO

Dopamine neurons mediate the association of conditioned stimuli (CS) with reward (unconditioned stimuli, US) by signaling the discrepancy between predicted and actual reward during the US. Some theoretical models suggest that learning is also influenced by the salience or associability of the CS. A hallmark of CS associability models is that they can explain latent inhibition, i.e., the observation that novel CS are more effectively learned than familiar CS. Novel CS are known to activate dopamine neurons, but whether those responses affect associative learning has not been investigated. Here, we used fiber photometry to characterize dopamine responses to inconsequential familiar and novel stimuli. Using bidirectional optogenetic modulation during conditioning, we then show that CS-evoked dopamine promotes conditioned responses. This suggests that Pavlovian conditioning is influenced by CS dopamine, in addition to US reward prediction errors. Accordingly, the absence of dopamine responses to familiar CS might explain their slower learning in latent inhibition.


Assuntos
Aprendizagem por Associação/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Parte Compacta da Substância Negra/metabolismo , Recompensa , Área Tegmentar Ventral/metabolismo , Animais , Sinais (Psicologia) , Neurônios Dopaminérgicos/metabolismo , Aprendizagem , Camundongos , Optogenética , Parte Compacta da Substância Negra/diagnóstico por imagem , Fotometria , Córtex Pré-Frontal , Terminações Pré-Sinápticas , Reconhecimento Psicológico , Área Tegmentar Ventral/diagnóstico por imagem
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 2166-2169, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440833

RESUMO

Deep brain stimulation is an established surgical treatment for several neurological and movement disorders, such as Parkinson's disease, in which electrostimulation is applied to targeted deep nuclei in the basal ganglia through implanted electrode leads. Recent technological improvements in the field have focused on the theoretical advantage of current steering and adaptive (closed-loop) deep brain stimulation. Current steering between several active electrodes would allow for improved accuracy when targeting the desired brain structures. This has the additional benefit of avoiding undesired stimulation of neural tracts that are related to side effects, e.g., internal capsule fibres of passage in subthalamic nucleus deep brain stimulation. Closed-loop deep brain stimulation is based on the premise of continuous recording of a proxy for pathological neural activity (such as beta-band power of measured local field potentials in patients with Parkinson's disease) and accordingly adapting the used stimulus parameters. In this study, we investigate the suitability of an existing highresolution neurorecording probe for high-precision neurostimulation. If a subset of the probe's recording electrodes can be used for stimulation, then the probe would be a suitable candidate for closed-loop deep brain stimulation. A finiteelement model is used to calculate the electric potential, induced by current injection through the high-resolution probe, for different sets of active electrodes. Volumes of activated tissue are calculated and a comparison is made between the highresolution probe and a conventional stimulation lead. We investigate the capability of the probe to shift the volume of activated tissue by steering currents to different sets of active electrodes. Finally, safety limits for the injected current are used to determine the size of the volume in which neurons can be activated with the relatively small electrodes patches on the highresolution probe.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Gânglios da Base , Eletrodos Implantados , Humanos , Doença de Parkinson/terapia
9.
J Neurophysiol ; 120(1): 149-161, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589813

RESUMO

Optogenetic manipulations are widely used for investigating the contribution of genetically identified cell types to behavior. Simultaneous electrophysiological recordings are less common, although they are critical for characterizing the specific impact of optogenetic manipulations on neural circuits in vivo. This is at least in part because combining photostimulation with large-scale electrophysiological recordings remains technically challenging, which also poses a limitation for performing extracellular identification experiments. Currently available interfaces that guide light of the appropriate wavelength into the brain combined with an electrophysiological modality suffer from various drawbacks such as a bulky size, low spatial resolution, heat dissipation, or photovoltaic artifacts. To address these challenges, we have designed and fabricated an integrated ultrathin neural interface with 12 optical outputs and 24 electrodes. We used the device to measure the effect of localized stimulation in the anterior olfactory cortex, a paleocortical structure involved in olfactory processing. Our experiments in adult mice demonstrate that because of its small dimensions, our novel tool causes far less tissue damage than commercially available devices. Moreover, optical stimulation and recording can be performed simultaneously, with no measurable electrical artifact during optical stimulation. Importantly, optical stimulation can be confined to small volumes with approximately single-cortical layer thickness. Finally, we find that even highly localized optical stimulation causes inhibition at more distant sites. NEW & NOTEWORTHY In this study, we establish a novel tool for simultaneous extracellular recording and optogenetic photostimulation. Because the device is built using established microchip technology, it can be fabricated with high reproducibility and reliability. We further show that even very localized stimulation affects neural firing far beyond the stimulation site. This demonstrates the difficulty in predicting circuit-level effects of optogenetic manipulations and highlights the importance of closely monitoring neural activity in optogenetic experiments.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados , Neurônios/fisiologia , Optogenética/métodos , Córtex Sensório-Motor/fisiologia , Animais , Eletrodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/instrumentação , Córtex Sensório-Motor/citologia
10.
Curr Biol ; 27(10): 1542-1548.e4, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28502658

RESUMO

Navigation, finding food sources, and avoiding danger critically depend on the identification and spatial localization of airborne chemicals. When monitoring the olfactory environment, rodents spontaneously engage in active olfactory sampling behavior, also referred to as exploratory sniffing [1]. Exploratory sniffing is characterized by stereotypical high-frequency respiration, which is also reliably evoked by novel odorant stimuli [2, 3]. To study novelty-induced exploratory sniffing, we developed a novel, non-contact method for measuring respiration by infrared (IR) thermography in a behavioral paradigm in which novel and familiar stimuli are presented to head-restrained mice. We validated the method by simultaneously performing nasal pressure measurements, a commonly used invasive approach [2, 4], and confirmed highly reliable detection of inhalation onsets. We further discovered that mice actively orient their nostrils toward novel, previously unexperienced, smells. In line with the remarkable speed of olfactory processing reported previously [3, 5, 6], we find that mice initiate their response already within the first sniff after odor onset. Moreover, transecting the anterior commissure (AC) disrupted orienting, indicating that the orienting response requires interhemispheric transfer of information. This suggests that mice compare odorant information obtained from the two bilaterally symmetric nostrils to locate the source of the novel odorant. We further demonstrate that asymmetric activation of the anterior olfactory nucleus (AON) is both necessary and sufficient for eliciting orienting responses. These findings support the view that the AON plays an important role in the internostril difference comparison underlying rapid odor source localization.


Assuntos
Comportamento Animal/efeitos dos fármacos , Nariz/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Tempo de Reação/fisiologia , Animais , Discriminação Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nariz/efeitos dos fármacos , Condutos Olfatórios/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Olfato/efeitos dos fármacos
11.
Neuron ; 92(3): 642-646, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27810009

RESUMO

Technological advances have the potential to dramatically increase our understanding of the human brain, treat and cure injury and disease, and enhance our general well-being. While advances in neuroscience hold great promise, they also raise profound ethical, legal, and social questions. In this vein, the Organization for Economic Co-operation and Development (OECD) convened an international workshop in September 2016 to explore responsible research and innovation in brain science.


Assuntos
Invenções/ética , Neurociências/ética , Neurociências/legislação & jurisprudência , Humanos , Invenções/legislação & jurisprudência , Responsabilidade Social
12.
Nature ; 482(7383): 85-8, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22258508

RESUMO

Dopamine has a central role in motivation and reward. Dopaminergic neurons in the ventral tegmental area (VTA) signal the discrepancy between expected and actual rewards (that is, reward prediction error), but how they compute such signals is unknown. We recorded the activity of VTA neurons while mice associated different odour cues with appetitive and aversive outcomes. We found three types of neuron based on responses to odours and outcomes: approximately half of the neurons (type I, 52%) showed phasic excitation after reward-predicting odours and rewards in a manner consistent with reward prediction error coding; the other half of neurons showed persistent activity during the delay between odour and outcome that was modulated positively (type II, 31%) or negatively (type III, 18%) by the value of outcomes. Whereas the activity of type I neurons was sensitive to actual outcomes (that is, when the reward was delivered as expected compared to when it was unexpectedly omitted), the activity of type II and type III neurons was determined predominantly by reward-predicting odours. We 'tagged' dopaminergic and GABAergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to optical stimulation while recording. All identified dopaminergic neurons were of type I and all GABAergic neurons were of type II. These results show that VTA GABAergic neurons signal expected reward, a key variable for dopaminergic neurons to calculate reward prediction error.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Punição , Recompensa , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Animais , Channelrhodopsins , Sinais (Psicologia) , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Odorantes/análise , Análise de Componente Principal , Ácido gama-Aminobutírico/metabolismo
13.
PLoS Biol ; 5(12): e321, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18052609

RESUMO

The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and learned vocalizations in songbirds bear behavioral and neural parallels, songbirds provide a genuine model for investigating the basic principles of speech and its pathologies. In zebra finch Area X, a basal ganglia structure necessary for song learning, FoxP2 expression increases during the time when song learning occurs. Here, we used lentivirus-mediated RNA interference (RNAi) to reduce FoxP2 levels in Area X during song development. Knockdown of FoxP2 resulted in an incomplete and inaccurate imitation of tutor song. Inaccurate vocal imitation was already evident early during song ontogeny and persisted into adulthood. The acoustic structure and the duration of adult song syllables were abnormally variable, similar to word production in children with DVD. Our findings provide the first example of a functional gene analysis in songbirds and suggest that normal auditory-guided vocal motor learning requires FoxP2.


Assuntos
Gânglios da Base/anatomia & histologia , Gânglios da Base/metabolismo , Tentilhões/fisiologia , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal/fisiologia , Animais , Tentilhões/anatomia & histologia , Tentilhões/genética , Tentilhões/metabolismo , Fatores de Transcrição Forkhead/genética , Lentivirus/genética , Masculino , Dados de Sequência Molecular , Interferência de RNA
14.
Proc Natl Acad Sci U S A ; 103(41): 15212-7, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17018643

RESUMO

Songbirds have one of the most accessible neural systems for the study of brain mechanisms of behavior. However, neuroethological studies in songbirds have been limited by the lack of high-throughput molecular resources and gene-manipulation tools. To overcome these limitations, we constructed 21 regular, normalized, and subtracted full-length cDNA libraries from brains of zebra finches in 57 developmental and behavioral conditions in an attempt to clone as much of the brain transcriptome as possible. From these libraries, approximately 14,000 transcripts were isolated, representing an estimated 4,738 genes. With the cDNAs, we created a hierarchically organized transcriptome database and a large-scale songbird brain cDNA microarray. We used the arrays to reveal a set of 33 genes that are regulated in forebrain vocal nuclei by singing behavior. These genes clustered into four anatomical and six temporal expression patterns. Their functions spanned a large range of cellular and molecular categories, from signal transduction, trafficking, and structural, to synaptically released molecules. With the full-length cDNAs and a lentiviral vector system, we were able to overexpress, in vocal nuclei, proteins of representative singing-regulated genes in the absence of singing. This publicly accessible resource http://songbirdtranscriptome.net can now be used to study molecular neuroethological mechanisms of behavior.


Assuntos
Comportamento Animal/fisiologia , Etologia , Tentilhões/genética , Regulação da Expressão Gênica/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Animais , Galinhas , Feminino , Tentilhões/fisiologia , Perfilação da Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Vocalização Animal/fisiologia
15.
Curr Opin Neurobiol ; 15(6): 694-703, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16266802

RESUMO

FoxP2 mutations in humans are associated with a disorder that affects both the comprehension of language and its production, speech. This discovery provided the first opportunity to analyze the genetics of language with molecular and neurobiological tools. The amino acid sequence and the neural expression pattern of FoxP2 are extremely conserved, from reptile to man. This suggests an important role for FoxP2 in vertebrate brains, regardless of whether they support imitative vocal learning or not. Its expression pattern pinpoints neural circuits that might have been crucial for the evolution of speech and language, including the basal ganglia and the cerebellum. Recent studies in songbirds show that during times of song plasticity FoxP2 is upregulated in a striatal region essential for song learning. This suggests that FoxP2 plays important roles both in the development of neural circuits and in the postnatal behaviors they mediate.


Assuntos
Evolução Biológica , Aves/fisiologia , Fatores de Transcrição Forkhead/genética , Animais , Encéfalo/anatomia & histologia , Química Encefálica/genética , Química Encefálica/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Aprendizagem/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Vocalização Animal/fisiologia
16.
J Neurosci ; 24(13): 3164-75, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15056696

RESUMO

Most vertebrates communicate acoustically, but few, among them humans, dolphins and whales, bats, and three orders of birds, learn this trait. FOXP2 is the first gene linked to human speech and has been the target of positive selection during recent primate evolution. To test whether the expression pattern of FOXP2 is consistent with a role in learned vocal communication, we cloned zebra finch FoxP2 and its close relative FoxP1 and compared mRNA and protein distribution in developing and adult brains of a variety of avian vocal learners and non-learners, and a crocodile. We found that the protein sequence of zebra finch FoxP2 is 98% identical with mouse and human FOXP2. In the avian and crocodilian forebrain, FoxP2 was expressed predominantly in the striatum, a basal ganglia brain region affected in patients with FOXP2 mutations. Strikingly, in zebra finches, the striatal nucleus Area X, necessary for vocal learning, expressed more FoxP2 than the surrounding tissue at post-hatch days 35 and 50, when vocal learning occurs. In adult canaries, FoxP2 expression in Area X differed seasonally; more FoxP2 expression was associated with times when song becomes unstable. In adult chickadees, strawberry finches, song sparrows, and Bengalese finches, Area X expressed FoxP2 to different degrees. Non-telencephalic regions in both vocal learning and non-learning birds, and in crocodiles, were less variable in expression and comparable with regions that express FOXP2 in human and rodent brains. We conclude that differential expression of FoxP2 in avian vocal learners might be associated with vocal plasticity.


Assuntos
Aves/fisiologia , Aprendizagem/fisiologia , Proteínas Repressoras/biossíntese , Fatores de Transcrição , Vocalização Animal/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Animais , Aves/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Clonagem Molecular , Sinais (Psicologia) , Fatores de Transcrição Forkhead , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Peso Molecular , Plasticidade Neuronal/fisiologia , Neurônios/classificação , Neurônios/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Proteínas Repressoras/genética , Especificidade da Espécie
17.
Nat Genet ; 35(4): 313-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14634649

RESUMO

We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Oligopeptídeos/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Feminino , Ligação Genética , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/classificação , Deficiência Intelectual Ligada ao Cromossomo X/etiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Linhagem , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...