Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
EMBO Mol Med ; 15(12): e17713, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37855243

RESUMO

Malaria infection elicits both protective and pathogenic immune responses, and IL-27 is a critical cytokine that regulate effector responses during infection. Here, we identified a critical window of CD4+ T cell responses that is targeted by IL-27. Neutralization of IL-27 during acute infection with Plasmodium chabaudi expanded specific CD4+ T cells, which were maintained at high levels thereafter. In the chronic phase, Plasmodium-specific CD4+ T cells in IL-27-neutralized mice consisted mainly of CD127+ KLRG1- and CD127- KLRG1+ subpopulations that displayed distinct cytokine production, proliferative capacity, and are maintained in a manner independent of active infection. Single-cell RNA-seq analysis revealed that these CD4+ T cell subsets formed independent clusters that express unique Th1-type genes. These IL-27-neutralized mice exhibited enhanced cellular and humoral immune responses and protection. These findings demonstrate that IL-27, which is produced during the acute phase of malaria infection, inhibits the development of unique Th1 memory precursor CD4+ T cells, suggesting potential implications for the development of vaccines and other strategic interventions.


Assuntos
Interleucina-27 , Malária , Plasmodium chabaudi , Camundongos , Animais , Linfócitos T , Malária/patologia , Linfócitos T CD4-Positivos , Camundongos Endogâmicos C57BL
2.
Lancet Reg Health West Pac ; 37: 100792, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693871

RESUMO

Background: Assessing the status of malaria transmission in endemic areas becomes increasingly challenging as countries approach elimination. Serology can provide robust estimates of malaria transmission intensities, and multiplex serological assays allow for simultaneous assessment of markers of recent and historical malaria exposure. Methods: Here, we evaluated different statistical and machine learning methods for analyzing multiplex malaria-specific antibody response data to classify recent and historical exposure to Plasmodium falciparum and Plasmodium vivax. To assess these methods, we utilized samples from a health-facility based survey (n = 9132) in the Philippines, where we quantified antibody responses against 8 P. falciparum and 6 P. vivax-specific antigens from 3 sites with varying transmission intensity. Findings: Measurements of antibody responses and seroprevalence were consistent with the 3 sites' known endemicity status. Among the models tested, a machine learning (ML) approach (Random Forest model) using 4 serological markers (PfGLURP R2, Etramp5.Ag1, GEXP18, and PfMSP119) gave better predictions for P. falciparum recent infection in Palawan (AUC: 0.9591, CI 0.9497-0.9684) than individual antigen seropositivity. Although the ML approach did not improve P. vivax infection predictions, ML classifications confirmed the absence of recent exposure to P. falciparum and P. vivax in both Occidental Mindoro and Bataan. For predicting historical P. falciparum and P. vivax transmission, seroprevalence and seroconversion rates based on cumulative exposure markers AMA1 and MSP119 showed reliable trends in the 3 sites. Interpretation: Our study emphasizes the utility of serological markers in predicting recent and historical exposure in a sub-national elimination setting, and also highlights the potential use of machine learning models using multiplex antibody responses to improve assessment of the malaria transmission status of countries aiming for elimination. This work also provides baseline antibody data for monitoring risk in malaria-endemic areas in the Philippines. Funding: Newton Fund, Philippine Council for Health Research and Development, UK Medical Research Council.

4.
Microbiol Spectr ; 11(3): e0522222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37158750

RESUMO

Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per µL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications. IMPORTANCE The spread of Plasmodium falciparum parasites with Pfhrp2/3 gene deletions presents a major threat to reliable point-of-care diagnosis with current rapid diagnostic tests (RDTs). Novel molecular diagnostics based on nucleic acid amplification are needed to address this liability. In this work, we overcome this challenge by developing sensitive tools for the detection of Plasmodium falciparum and non-P. falciparum species. Furthermore, we evaluate these tools with a cohort of symptomatic and asymptomatic malaria patients and test a subcohort locally in Ghana. The findings of this work could lead to the implementation of DNA-based diagnostics to fight against the spread of malaria and provide reliable, sensitive, and specific diagnostics at the point of care.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Parasitos , Humanos , Animais , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Malária/diagnóstico , Malária/parasitologia , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética
5.
Virus Evol ; 9(1): vead012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926448

RESUMO

Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.

6.
Front Microbiol ; 14: 1304283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312499

RESUMO

The integration of next-generation sequencing into the identification and characterization of resistant and virulent strains as well as the routine surveillance of foodborne pathogens such as Salmonella enterica have not yet been accomplished in the Philippines. This study investigated the antimicrobial profiles, virulence, and susceptibility of the 105 S. enterica isolates from swine and chicken samples obtained from slaughterhouses and public wet markets in Metropolitan Manila using whole-genome sequence analysis. Four predominant serovars were identified in genotypic serotyping, namely, Infantis (26.7%), Anatum (19.1%), Rissen (18.1%), and London (13.3%). Phenotypic antimicrobial resistance (AMR) profiling revealed that 65% of the isolates were resistant to at least one antibiotic, 37% were multidrug resistant (MDR), and 57% were extended-spectrum ß-lactamase producers. Bioinformatic analysis revealed that isolates had resistance genes and plasmids belonging to the Col and Inc plasmid families that confer resistance against tetracycline (64%), sulfonamide (56%), and streptomycin (56%). Further analyses revealed the presence of 155 virulence genes, 42 of which were serovar-specific. The virulence genes primarily code for host immune system modulators, iron acquisition enzyme complexes, host cell invasion proteins, as well as proteins that allow intracellular and intramacrophage survival. This study showed that virulent MDR S. enterica and several phenotypic and genotypic AMR patterns were present in the food chain. It serves as a foundation to understand the current AMR status in the Philippines food chain and to prompt the creation of preventative measures and efficient treatments against foodborne pathogens.

7.
PLoS Negl Trop Dis ; 16(5): e0010365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35507552

RESUMO

BACKGROUND: Characterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis. METHODS AND FINDINGS: Serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden's J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1-2 of fever, yet were confirmatory of primary infections on days 3-5 of fever. CONCLUSION: We demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings.


Assuntos
Vírus da Dengue , Dengue , Anticorpos Antivirais , Estudos Transversais , Dengue/epidemiologia , Testes Diagnósticos de Rotina , Febre , Humanos , Imunoglobulina G , Imunoglobulina M , Sistemas Automatizados de Assistência Junto ao Leito , Sensibilidade e Especificidade , Proteínas não Estruturais Virais , Viremia
8.
Eur J Immunol ; 52(2): 270-284, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34773640

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches.


Assuntos
Hepatopatias , Fígado , Ativação de Macrófagos , Macrófagos/imunologia , Malária , Plasmodium berghei/imunologia , Transdução de Sinais , Receptor Toll-Like 9/imunologia , Animais , Feminino , Fígado/imunologia , Fígado/parasitologia , Hepatopatias/genética , Hepatopatias/imunologia , Hepatopatias/parasitologia , Malária/genética , Malária/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
9.
Int J Infect Dis ; 116: 174-181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34883232

RESUMO

OBJECTIVE: This study provides 2016 data on the prevalence of key single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance in Palawan, Philippines. Findings were combined with historical data to model temporal changes in the prevalence of these SNPs in Plasmodium isolates. METHODS: Plasmodium isolates were genotyped using drug resistance markers pfmdr1, pfcrt, pfdhfr, pfdhps, kelch-13, pvmdr1, pvdhfr, and pvdhps. Temporal trends in the probability of mutations were estimated as a function of time using a binomial generalised linear model. RESULTS: All samples sequenced for Plasmodium falciparum chloroquine markers pfmdr1 and pfcrt had wild-type alleles. Varying mutation patterns were observed for the sulphadoxine/pyrimethamine markers pfdhps and pfdhfr; complete quintuplet mutations were not found. No SNPs were observed for the artemisinin marker kelch-13. For Plasmodium vivax, differing patterns were detected for pvmdr1, pvdhfr, and pvdhps. CONCLUSIONS: The study findings suggest that the current drugs remain effective and that there is limited importation and establishment of resistant parasites in the area. Clear temporal trends were recognised, with prominent decreases in the proportions of pfcrt and pfmdr mutations detected within the past 15 years, consistent with a change in antimalarial drug policy. Continuous surveillance of antimalarial drug resistance is important to support malaria elimination efforts.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação , Filipinas/epidemiologia , Plasmodium falciparum , Plasmodium vivax/genética , Prevalência , Proteínas de Protozoários/genética
10.
Parasite Immunol ; 43(12): e12877, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34515999

RESUMO

Sporozoite antigens are the basis of a number of malaria vaccines being tested, but the contribution of antigens expressed during subsequent liver stage development to pre-erythrocytic stage immunity is poorly understood. We previously showed that, following immunisation with radiation attenuated sporozoites (RAS), a model epitope embedded in a sporozoite surface protein elicited robust CD8+ T cell responses, whilst the same epitope in a liver stage antigen induced inferior responses. Since RAS arrest early in their development in host hepatocytes, we hypothesised that extending parasite maturation in the liver could considerably improve the epitope-specific CD8+ T cell response. Here, we employed a late liver stage arrested parasite model, azithromycin prophylaxis alongside live sporozoites, to increase expression of the model epitope until full liver stage maturation. Strikingly, this alternative immunisation strategy, which has been shown to elicit superior protection, failed to improve the resulting epitope-specific CD8+ T cell responses. Our findings support the notion that liver stage antigens are poorly immunogenic and provide additional caution about prioritising antigens for vaccine development based solely on immunogenicity.


Assuntos
Vacinas Antimaláricas , Plasmodium berghei , Animais , Antígenos de Protozoários , Linfócitos T CD8-Positivos , Fígado/parasitologia , Esporozoítos
11.
BMC Med ; 19(1): 217, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587957

RESUMO

BACKGROUND: Stratifying dengue risk within endemic countries is crucial for allocating limited control interventions. Current methods of monitoring dengue transmission intensity rely on potentially inaccurate incidence estimates. We investigated whether incidence or alternate metrics obtained from standard, or laboratory, surveillance operations represent accurate surrogate indicators of the burden of dengue and can be used to monitor the force of infection (FOI) across urban centres. METHODS: Among those who reported and resided in 13 cities across the Philippines, we collected epidemiological data from all dengue case reports between 2014 and 2017 (N 80,043) and additional laboratory data from a cross-section of sampled case reports (N 11,906) between 2014 and 2018. At the city level, we estimated the aggregated annual FOI from age-accumulated IgG among the non-dengue reporting population using catalytic modelling. We compared city-aggregated FOI estimates to aggregated incidence and the mean age of clinically and laboratory diagnosed dengue cases using Pearson's Correlation coefficient and generated predicted FOI estimates using regression modelling. RESULTS: We observed spatial heterogeneity in the dengue average annual FOI across sampled cities, ranging from 0.054 [0.036-0.081] to 0.249 [0.223-0.279]. Compared to FOI estimates, the mean age of primary dengue infections had the strongest association (ρ -0.848, p value<0.001) followed by the mean age of those reporting with warning signs (ρ -0.642, p value 0.018). Using regression modelling, we estimated the predicted annual dengue FOI across urban centres from the age of those reporting with primary infections and revealed prominent spatio-temporal heterogeneity in transmission intensity. CONCLUSIONS: We show the mean age of those reporting with their first dengue infection or those reporting with warning signs of dengue represent superior indicators of the dengue FOI compared to crude incidence across urban centres. Our work provides a framework for national dengue surveillance to routinely monitor transmission and target control interventions to populations most in need.


Assuntos
Dengue , Cidades/epidemiologia , Dengue/epidemiologia , Humanos , Incidência , Laboratórios , Filipinas/epidemiologia
12.
Front Microbiol ; 12: 703804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421862

RESUMO

Despite many decades of research to develop a malaria vaccine, only one vaccine candidate has been explored in pivotal phase III clinical trials. This candidate subunit vaccine consists of a portion of a single Plasmodium antigen, circumsporozoite protein (CSP). This antigen was initially identified in the murine malaria model and shown to contain an immunodominant and protective CD8+ T cell epitope specific to the H-2K d (BALB/c)-restricted genetic background. A high-content screen for CD8+ epitopes in the H2K b /D b (C57BL/6)-restricted genetic background, identified two distinct dominant epitopes. In this study, we present a characterization of one corresponding antigen, the Plasmodium sporozoite-specific protein S20. Plasmodium berghei S20 knockout sporozoites and liver stages developed normally in vitro and in vivo. This potent infectivity of s20(-) sporozoites permitted comparative analysis of knockout and wild-type parasites in cell-based vaccination. Protective immunity of irradiation-arrested s20(-) sporozoites in single, double and triple immunizations was similar to irradiated unaltered sporozoites in homologous challenge experiments. These findings demonstrate the presence of an immunogenic Plasmodium pre-erythrocytic determinant, which is not essential for eliciting protection. Although S20 is not needed for colonization of the mammalian host and for initiation of a blood infection, it is conserved amongst Plasmodium species. Malarial parasites express conserved, immunogenic proteins that are not required to establish infection but might play potential roles in diverting cellular immune responses.

13.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452307

RESUMO

Zika virus (ZIKV) exposure across flavivirus-endemic countries, including the Philippines, remains largely unknown despite sporadic case reporting and environmental suitability for transmission. Using laboratory surveillance data from 2016, 997 serum samples were randomly selected from suspected dengue (DENV) case reports across the Philippines and assayed for serological markers of short-term (IgM) and long-term (IgG) ZIKV exposure. Using mixture models, we re-evaluated ZIKV IgM/G seroprevalence thresholds and used catalytic models to quantify the force of infection (attack rate, AR) from age-accumulated ZIKV exposure. While we observed extensive ZIKV/DENV IgG cross-reactivity, not all individuals with active DENV presented with elevated ZIKV IgG, and a proportion of dengue-negative cases (DENV IgG-) were ZIKV IgG-positive (14.3%, 9/63). We identified evidence of long-term, yet not short-term, ZIKV exposure across Philippine regions (ZIKV IgG+: 31.5%, 314/997) which was geographically uncorrelated with DENV exposure. In contrast to the DENV AR (12.7% (95%CI: 9.1-17.4%)), the ZIKV AR was lower (5.7% (95%CI: 3-11%)) across the country. Our results provide evidence of widespread ZIKV exposure across the Philippines and suggest the need for studies to identify ZIKV infection risk factors over time to better prepare for potential future outbreaks.


Assuntos
Anticorpos Antivirais/sangue , Infecção por Zika virus/epidemiologia , Zika virus/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Criança , Reações Cruzadas , Dengue/epidemiologia , Dengue/imunologia , Vírus da Dengue/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Filipinas/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem , Infecção por Zika virus/imunologia
14.
EMBO Mol Med ; 13(4): e13390, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33709544

RESUMO

Immunogenicity is considered one important criterion for progression of candidate vaccines to further clinical evaluation. We tested this assumption in an infection and vaccination model for malaria pre-erythrocytic stages. We engineered Plasmodium berghei parasites that harbour a well-characterised epitope for stimulation of CD8+ T cells, either as an antigen in the sporozoite surface-expressed circumsporozoite protein or the parasitophorous vacuole membrane associated protein upregulated in sporozoites 4 (UIS4) expressed in exo-erythrocytic forms (EEFs). We show that the antigen origin results in profound differences in immunogenicity with a sporozoite antigen eliciting robust, superior antigen-specific CD8+ T-cell responses, whilst an EEF antigen evokes poor responses. Despite their contrasting immunogenic properties, both sporozoite and EEF antigens gain access to antigen presentation pathways in hepatocytes, as recognition and targeting by vaccine-induced effector CD8+ T cells results in high levels of protection when targeting either antigen. Our study is the first demonstration that poorly immunogenic EEF antigens do not preclude their susceptibility to antigen-specific CD8+ T-cell killing, which has wide-ranging implications on antigen prioritisation for next-generation pre-erythrocytic malaria vaccines.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Linfócitos T CD8-Positivos , Malária/prevenção & controle , Esporozoítos , Vacinação
15.
Am J Trop Med Hyg ; 104(3): 968-978, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33534761

RESUMO

Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in three sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable medium risk), and Rizal, Palawan (high risk, control). Only one rapid diagnostic test (RDT)-positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro, suggesting the absence of transmission. In Palawan, the inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with the RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bed net use having a protective effect. Subpatent infections were more common in men and older age-groups. Overall, malaria risks were not associated with participants' classification, and some of the non-patient clinic attendees reported febrile illnesses (1.9%, 26/1,369), despite not seeking treatment, highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health facility-based surveys to augment surveillance data to increase the probability of detecting infections in the wider community.


Assuntos
Testes Diagnósticos de Rotina/métodos , Testes Diagnósticos de Rotina/estatística & dados numéricos , Instalações de Saúde/estatística & dados numéricos , Malária Falciparum/diagnóstico , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Vigilância da População/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Filipinas , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Adulto Jovem
16.
Parasite Immunol ; 43(2): e12810, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528861
17.
Parasite Immunol ; 43(2): e12795, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981095

RESUMO

Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts.


Assuntos
Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Esporozoítos/imunologia , África , Animais , Anticorpos Antiprotozoários , Humanos , Imunidade , Imunidade Celular , Estágios do Ciclo de Vida/imunologia , Fígado/imunologia , Pele/imunologia
18.
BMC Med ; 18(1): 364, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243267

RESUMO

BACKGROUND: In dengue-endemic countries, targeting limited control interventions to populations at risk of severe disease could enable increased efficiency. Individuals who have had their first (primary) dengue infection are at risk of developing more severe secondary disease, thus could be targeted for disease prevention. Currently, there is no reliable algorithm for determining primary and post-primary (infection with more than one flavivirus) status from a single serum sample. In this study, we developed and validated an immune status algorithm using single acute serum samples from reporting patients and investigated dengue immuno-epidemiological patterns across the Philippines. METHODS: During 2015/2016, a cross-sectional sample of 10,137 dengue case reports provided serum for molecular (anti-DENV PCR) and serological (anti-DENV IgM/G capture ELISA) assay. Using mixture modelling, we re-assessed IgM/G seroprevalence and estimated functional, disease day-specific, IgG:IgM ratios that categorised the reporting population as negative, historical, primary and post-primary for dengue. We validated our algorithm against WHO gold standard criteria and investigated cross-reactivity with Zika by assaying a random subset for anti-ZIKV IgM and IgG. Lastly, using our algorithm, we explored immuno-epidemiological patterns of dengue across the Philippines. RESULTS: Our modelled IgM and IgG seroprevalence thresholds were lower than kit-provided thresholds. Individuals anti-DENV PCR+ or IgM+ were classified as active dengue infections (83.1%, 6998/8425). IgG- and IgG+ active dengue infections on disease days 1 and 2 were categorised as primary and post-primary, respectively, while those on disease days 3 to 5 with IgG:IgM ratios below and above 0.45 were classified as primary and post-primary, respectively. A significant proportion of post-primary dengue infections had elevated anti-ZIKV IgG inferring previous Zika exposure. Our algorithm achieved 90.5% serological agreement with WHO standard practice. Post-primary dengue infections were more likely to be older and present with severe symptoms. Finally, we identified a spatio-temporal cluster of primary dengue case reporting in northern Luzon during 2016. CONCLUSIONS: Our dengue immune status algorithm can equip surveillance operations with the means to target dengue control efforts. The algorithm accurately identified primary dengue infections who are at risk of future severe disease.


Assuntos
Vírus da Dengue/patogenicidade , Dengue/epidemiologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Filipinas , Adulto Jovem
19.
Malar J ; 19(1): 364, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036624

RESUMO

BACKGROUND: The immune mechanisms that determine whether a Plasmodium falciparum infection would be symptomatic or asymptomatic are not fully understood. Several studies have been carried out to characterize the associations between disease outcomes and leucocyte numbers. However, the majority of these studies have been conducted in adults with acute uncomplicated malaria, despite children being the most vulnerable group. METHODS: Peripheral blood leucocyte subpopulations were characterized in children with acute uncomplicated (symptomatic; n = 25) or asymptomatic (n = 67) P. falciparum malaria, as well as malaria-free (uninfected) children (n = 16) from Obom, a sub-district of Accra, Ghana. Leucocyte subpopulations were enumerated by flow cytometry and correlated with two measures of parasite load: (a) plasma levels of P. falciparum histidine-rich protein 2 (PfHRP2) as a proxy for parasite biomass and (b) peripheral blood parasite densities determined by microscopy. RESULTS: In children with symptomatic P. falciparum infections, the proportions and absolute cell counts of total (CD3 +) T cells, CD4 + T cells, CD8 + T cells, CD19 + B cells and CD11c + dendritic cells (DCs) were significantly lower as compared to asymptomatic P. falciparum-infected and uninfected children. Notably, CD15 + neutrophil proportions and cell counts were significantly increased in symptomatic children. There was no significant difference in the proportions and absolute counts of CD14 + monocytes amongst the three study groups. As expected, measures of parasite load were significantly higher in symptomatic cases. Remarkably, PfHRP2 levels and parasite densities negatively correlated with both the proportions and absolute numbers of peripheral leucocyte subsets: CD3 + T, CD4 + T, CD8 + T, CD19 + B, CD56 + NK, γδ + T and CD11c + cells. In contrast, both PfHRP2 levels and parasite densities positively correlated with the proportions and absolute numbers of CD15 + cells. CONCLUSIONS: Symptomatic P. falciparum infection is correlated with an increase in the levels of peripheral blood neutrophils, indicating a role for this cell type in disease pathogenesis. Parasite load is a key determinant of peripheral cell numbers during malaria infections.


Assuntos
Antígenos de Protozoários/análise , Leucócitos/parasitologia , Malária Falciparum/parasitologia , Carga Parasitária , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/análise , Infecções Assintomáticas , Criança , Feminino , Citometria de Fluxo , Gana , Humanos , Masculino
20.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32719159

RESUMO

The circumsporozoite protein (CSP) builds up the surface coat of sporozoites and is the leading malaria pre-erythrocytic-stage vaccine candidate. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating developing parasites in hepatocytes, resulting in protective immunity. In this study, we characterized the importance of the immunodominant CSP-derived epitope SYIPSAEKI of Plasmodium berghei in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-Kd, we established that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunization. Yet, sterile protection was achieved in the absence of this epitope, substantiating the concept that other antigens can be sufficient for parasite-induced protective immunity. Furthermore, we demonstrated that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively targeted parasites in hepatocytes. The resulting sterile protection strictly relied on the expression of SYIPSAEKI. In C57BL/6 mice, which are unable to present the immunodominant epitope, CSP-based vaccines did not confer complete protection, despite the induction of high levels of CSP-specific antibodies. These findings underscore the significance of CSP in protection against malaria pre-erythrocytic stages and demonstrate that a significant proportion of the protection against the parasite is mediated by CD8+ T cells specific for the immunodominant CSP-derived epitope.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Apresentação de Antígeno , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos de Linfócito T/química , Imunização , Malária/imunologia , Malária/parasitologia , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos , Proteínas de Protozoários/química , Especificidade da Espécie , Esporozoítos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...