Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 90, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216628

RESUMO

Unique patterns of inheritance and selection on Y chromosomes have led to the evolution of specialized gene functions. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as those of wild-type and that mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract. Therefore, although mature sperm are produced by WDY mutant males, and are transferred to females, those sperm fail to enter the female sperm storage organs. We report genotype-dependent and regional differences in sperm motility that appear to break the correlation between sperm tail beating and propulsion. Furthermore, we identify a significant change in hydrophobicity at a residue at a putative calcium-binding site in WDY orthologs at the split between the melanogaster and obscura species groups, when WDY first became Y-linked. This suggests that a major functional change in WDY coincided with its appearance on the Y chromosome. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.


Assuntos
Drosophila melanogaster , Genes Ligados ao Cromossomo Y , Motilidade dos Espermatozoides , Animais , Feminino , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Sêmen , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Proteínas de Drosophila/genética
2.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36778485

RESUMO

Unique patterns of inheritance and selection on Y chromosomes lead to the evolution of specialized gene functions. Yet characterizing the function of genes on Y chromosomes is notoriously difficult. We report CRISPR mutants in Drosophila of the Y-linked gene, WDY, which is required for male fertility. WDY mutants produce mature sperm with beating tails that can be transferred to females but fail to enter the female sperm storage organs. We demonstrate that the sperm tails of WDY mutants beat approximately half as fast as wild-type sperm's and that the mutant sperm do not propel themselves within the male ejaculatory duct or female reproductive tract (RT). These specific motility defects likely cause the sperm storage defect and sterility of the mutants. Regional and genotype-dependent differences in sperm motility suggest that sperm tail beating and propulsion do not always correlate. Furthermore, we find significant differences in the hydrophobicity of key residues of a putative calcium-binding domain between orthologs of WDY that are Y-linked and those that are autosomal. Given that WDY appears to be evolving under positive selection, our results suggest that WDY's functional evolution coincides with its transition from autosomal to Y-linked in Drosophila melanogaster and its most closely related species. Finally, we show that mutants for another Y-linked gene, PRY, also show a sperm storage defect that may explain their subfertility. In contrast to WDY, PRY mutants do swim in the female RT, suggesting they are defective in yet another mode of motility, navigation, or a necessary interaction with the female RT. Overall, we provide direct evidence for the long-held presumption that protein-coding genes on the Drosophila Y regulate sperm motility.

3.
PLoS Negl Trop Dis ; 15(9): e0009815, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34591860

RESUMO

BACKGROUND: Aedes aegypti mosquitoes are globally distributed vectors of viruses that impact the health of hundreds of millions of people annually. Mating and blood feeding represent fundamental aspects of mosquito life history that carry important implications for vectorial capacity and for control strategies. Females transmit pathogens to vertebrate hosts and obtain essential nutrients for eggs during blood feeding. Further, because host-seeking Ae. aegypti females mate with males swarming near hosts, biological crosstalk between these behaviors could be important. Although mating influences nutritional intake in other insects, prior studies examining mating effects on mosquito blood feeding have yielded conflicting results. METHODOLOGY/PRINCIPAL FINDINGS: To resolve these discrepancies, we examined blood-feeding physiology and behavior in virgin and mated females and in virgins injected with male accessory gland extracts (MAG), which induce post-mating changes in female behavior. We controlled adult nutritional status prior to blood feeding by using water- and sugar-fed controls. Our data show that neither mating nor injection with MAG affect Ae. aegypti blood intake, digestion, or feeding avidity for an initial blood meal. However, sugar feeding, a common supplement in laboratory settings but relatively rare in nature, significantly affected all aspects of feeding and may have contributed to conflicting results among previous studies. Further, mating, MAG injection, and sugar intake induced declines in subsequent feedings after an initial blood meal, correlating with egg production and laying. Taking our evaluation to the field, virgin and mated mosquitoes collected in Colombia were equally likely to contain blood at the time of collection. CONCLUSIONS/SIGNIFICANCE: Mating, MAG, and sugar feeding impact a mosquito's estimated ability to transmit pathogens through both direct and indirect effects on multiple aspects of mosquito biology. Our results highlight the need to consider natural mosquito ecology, including diet, when assessing their physiology and behavior in the laboratory.


Assuntos
Aedes/fisiologia , Comportamento Alimentar/fisiologia , Mosquitos Vetores/fisiologia , Reprodução , Açúcares , Animais , Arbovírus , Sangue , Colômbia , Vetores de Doenças , Feminino , Humanos , Masculino , Mosquitos Vetores/virologia , Comportamento Sexual Animal/fisiologia
4.
Genetics ; 214(4): 977-990, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32098759

RESUMO

Gene-poor, repeat-rich regions of the genome are poorly understood and have been understudied due to technical challenges and the misconception that they are degenerating "junk." Yet multiple lines of evidence indicate these regions may be an important source of variation that could drive adaptation and species divergence, particularly through regulation of fertility. The ∼40 Mb Y chromosome of Drosophila melanogaster contains only 16 known protein-coding genes, and is highly repetitive and entirely heterochromatic. Most of the genes originated from duplication of autosomal genes and have reduced nonsynonymous substitution rates, suggesting functional constraint. We devised a genetic strategy for recovering and retaining stocks with sterile Y-linked mutations and combined it with CRISPR to create mutants with deletions that disrupt three Y-linked genes. Two genes, PRY and FDY, had no previously identified functions. We found that PRY mutant males are subfertile, but FDY mutant males had no detectable fertility defects. FDY, the newest known gene on the Y chromosome, may have fertility effects that are conditional or too subtle to detect. The third gene, CCY, had been predicted but never formally shown to be required for male fertility. CRISPR targeting and RNA interference of CCY caused male sterility. Surprisingly, however, our CCY mutants were sterile even in the presence of an extra wild-type Y chromosome, suggesting that perturbation of the Y chromosome can lead to dominant sterility. Our approach provides an important step toward understanding the complex functions of the Y chromosome and parsing which functions are accomplished by genes vs. repeat elements.


Assuntos
Cromossomos de Insetos/genética , Proteínas de Drosophila/genética , Infertilidade Masculina/genética , Cromossomo Y/genética , Animais , Sistemas CRISPR-Cas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Edição de Genes , Masculino , Mutação
5.
Elife ; 3: e03383, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25107277

RESUMO

The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas F-Box/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miosinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Padronização Corporal/genética , Moléculas de Adesão Celular/genética , Polaridade Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas F-Box/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Miosinas/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais , Vesículas Transportadoras
6.
Dev Biol ; 368(2): 358-69, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22683826

RESUMO

The survival and growth of individual cells in a tissue can be nonautonomously regulated by the properties of adjacent cells. In mosaic Drosophila imaginal discs, for example, wild-type cells induce the elimination of adjacent slow-growing Minute cells by apoptosis, while, conversely, certain types of faster-growing cells are able to eliminate adjacent wild-type cells. This process, known as cell competition, represents one example of a diverse group of phenomena in which short-range heterotypic interactions result in the selective elimination of one type of cell by another. The mechanisms that designate "winner" and "loser" genotypes in these processes are not known. Here we show that apoptosis is observed preferentially at boundaries that separate populations of cells that express different levels of the transmembrane protein Crumbs (Crb). Cells that express higher levels of Crb tend to be eliminated when they are near cells that express lower levels of Crb. We also observe distortions in the structure of epithelia on either side of boundaries between populations of cells that differ in Crb expression. Thus, while previous studies have focused mostly on the cell autonomous functions of Crb, we show that Crb can regulate cell survival and tissue morphology nonautonomously. Moreover, we find that the extracellular domain (ECD) of Crb, which seems to be dispensable for some of the other characterised functions of Crb, is required to elicit the nonautonomous effects on cell survival. The ECD can also regulate the subcellular localisation of Hippo pathway components, and possibly other proteins, in adjacent cells and may therefore directly mediate these effects. Several genetic lesions alter Crb levels, including loss-of-function mutations in hyperplastic tumour suppressors in the Hippo-Salvador-Warts pathway and in neoplastic tumour suppressor genes, such as scribble. Thus, Crb may be part of a "surveillance mechanism" that is responsible for the cell death that is observed at the boundaries of mutant clones in these cases.


Assuntos
Apoptose/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/fisiologia , Animais , Apoptose/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Olho/citologia , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...