Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987119

RESUMO

As the products made from wood-plastic composites (WPCs) become more sophisticated and required more detail profiles, the injection moulding processing method with wood pulp as the reinforcing material is the answer to cater to the rapid change and demands of composite products. The general objective of this study was to study the effects of the material formulation, as well as the injection moulding process parameters, on the properties of a polypropylene composite reinforced with chemi-thermomechanical pulp from oil palm trunks (PP/OPTP composite) via the injection moulding process. The PP/OPTP composite with a material formulation of 70% pulp/26% PP/4% Exxelor PO produced using injection moulding at 80 °C as the mould temperature and with 50 tonnes of injection pressure exhibited the highest physical and mechanical properties. The increment loading of pulp increased the water absorption capacity of the composite. Higher loading of the coupling agent effectively reduced the water absorption capacity and increased the flexural strength of the composite. The increase in mould temperature from unheated to 80 °C prevented excessive heat loss of the flowing material, which enabled the molten material to flow better and filled up all cavities in the mould. The increased injection pressure slightly improved the physical properties of the composite, but the effect on the mechanical properties was insignificant. For the future development of WPCs, further studies should be focused on the viscosity behaviour, as a greater understanding of the processing parameters' effects on the PP/OPTP's viscosity behaviour will lead to improved product design and enable great potential usage of WPCs.

2.
Polymers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501601

RESUMO

An integrated and feasible approach was proposed using the underutilized grass fibre (stem) derived from Napier grass and sugarcane for paper production in this study. To enhance paper strength, pre-hydrolysis and beating techniques have been used to improve the chemical pulps and mechanical pulping process, respectively. Napier grass and sugarcane are promising non-wood sources for pulp production, owing to their high cellulose and low lignin and extractive content. With the additional mild alkaline pre-treatment to the mechanical pulping process, the lignin content was greatly reduced. The results reveal that the mechanical pulping with alkaline pre-treatment may indeed potentially replace the most prevalent pulping process (chemical pulping). As evidenced by the paper strength properties, mechanical pulping is far more suitable for grass-type biomass, particularly Napier grass, which had a folding endurance capability five times greater than chemical pulping. Furthermore, the remaining high hemicellulose content from mechanical pulping contributed to a high pulp yield, while also facilitating the fibrillation on the sugarcane's laboratory paper handsheet. The findings also demonstrated that the additional beating process from chemical pulping causes the fibres to be drawn toward each other, resulting in a more robust fibre network that contributes to good paper strength. Consequently, this work sheds new light on the development of advanced paper derived from grass fibre.

3.
Polymers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36146007

RESUMO

The development of low-environmental-impact technologies for the elimination of biological damage is one of the vital goals of the wood protection industry. The possibility of utilizing pyroligneous acid as a wood preservative can be a great solution to extend the application of the currently fast-growing timber species, which has lower natural durability against biological damage. In this study, the effectiveness of pyroligneous acid as a wood preservative was evaluated by impregnating rubberwood with pyroligneous acid using vacuum-pressure treatment, and the treated woods were exposed to mould fungi, wood-decay fungi and termite attacks under laboratory conditions. Pyroligneous acids produced from rubberwood (RWPA) and oil palm trunk (OPTPA) at different pyrolysis temperatures were evaluated. To fully understand the effectiveness of pyroligneous acids as wood preservatives, different concentrations of pyroligneous acids were impregnated into rubberwood. Concentrations of 50% RWPA and 30% OPTPA were sufficient against mould and decay fungi on rubberwood. Rubberwood impregnated with pyroligneous acid acted as a slow-acting toxic bait to cause a high termite mortality rate due to toxic feeding and does not serve as a good repellent to prevent termites from feeding on the wood. In general, OPTPA has better biological durability compared to RWPA.

4.
Polymers (Basel) ; 13(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771357

RESUMO

Unproductive young rubber trees (15 years old) with smaller diameters (15 to 18 cm) compared to conventional rubber logs, harvested at the age of 25 years old, were selected for the production of laminated panels. Spindleless rotary veneer peeling was applied to logs from short-rotation rubber forest plantations to produce veneers for structural purposes. This raises questions about the utilization of these small-diameter logs with respect to its effect on the quality of veneer and laminated panels produced. This study examines the effect of the glue spread rates on the physical and mechanical properties of rubberwood laminated veneer lumber (LVL). Analysis of variance shows that the application of a 280 g/m2 glue spread rate significantly improved the density, water absorption and dimensional stability of rubberwood LVL. The mechanical properties of rubberwood LVL produced with a 200 g/m2 glue spread rate met the minimum requirement for the 2.1E-3100F stress class; 91.05 MPa for the modulus of rupture in the flatwise direction and 50.23 MPa for compressive strength parallel to the longitudinal axis. The modulus of elasticity in the flatwise direction of 11,189.55 MPa reached the minimum requirement for the 1.5E-2250F stress class.

5.
Polymers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833252

RESUMO

The aim of this study was to select the optimal conditions for the carbonization process followed by surface modification treatment with sodium hydroxide (NaOH) to obtain a highly microporous activated carbon structure derived from palm kernel shells (PKS) and coconut shells (CS). The effects of the carbonization temperature and NaOH concentration on the physiochemical properties, adsorption capability, specific surface area, surface morphology, and surface chemistry of PKS and CS were evaluated in this study. The results show that surface-modified activated carbons presented higher surface area values (CS: 356.87 m2 g-1, PKS: 427.64 m2 g-1), smaller pore size (CS: 2.24 nm, PKS: 1.99 nm), and larger pore volume (CS: 0.34 cm3 g-1, PKS: 0.30 cm3 g-1) than the untreated activated carbon, demonstrating that the NaOH surface modification was efficient enough to improve the surface characteristics of the activated carbon. Moreover, surface modification via 25% NaOH greatly increases the active functional group of activated carbon, thereby directly increasing the adsorption capability of activated carbon (CS: 527.44 mg g-1, PKS: 627.03 mg g-1). By applying the NaOH post-treatment as the ultimate surface modification technique to the activated carbon derived from PKS and CS, a highly microporous structure was produced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA