Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4263, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769301

RESUMO

Abrupt radiocarbon (14C) excursions, or Miyake events, in sequences of radiocarbon measurements from calendar-dated tree-rings provide opportunities to assign absolute calendar dates to undated wood samples from contexts across history and prehistory. Here, we report a tree-ring and 14C-dating study of the Neolithic site of Dispilio, Northern Greece, a waterlogged archaeological site on Lake Kastoria. Findings secure an absolute, calendar-dated time using the 5259 BC Miyake event, with the final ring of the 303-year-long juniper tree-ring chronology dating to 5140 BC. While other sites have been absolutely dated to a calendar year through 14C-signature Miyake events, Dispilio is the first European Neolithic site of these and it provides a fixed, calendar-year anchor point for regional chronologies of the Neolithic.

2.
PLoS One ; 15(12): e0243719, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370331

RESUMO

In archaeological research, changes in material culture and the evolution of styles are taken as major indicators for socio-cultural transformation. They form the basis for typo-chronological classification and the establishment of phases and periods. Central European Bronze Age material culture from burials reveals changes during the Bronze Age and represents a perfect case study for analyzing phenomena of cultural change and the adoption of innovation in the societies of prehistoric Europe. Our study focuses on the large-scale change in material culture which took place in the second millennium BC and the emergence at the same period of new burial rites: the shift from inhumation burials in flat graves to complex mounds and simple cremation burials. Paul Reinecke was the first to divide the European Bronze Age (EBA) into two phases, Bz A1 and A2. The shift from the first to the second phase has so far been ascribed to technical advances. Our study adopted an innovative approach to quantifying this phenomenon. Through regressive reciprocal averaging and Bayesian analysis of radiocarbon-dated grave contexts located in Switzerland and southern Germany, we modelled chronological changes in the material culture and changes in burial rites in these regions in a probabilistic way. We used kernel density models to summarize radiocarbon dates, with the aim of visualizing cultural changes in the third and second millennium BC. In 2015, Stockhammer et al. cast doubt on the chronological sequence of the Reinecke phases of the EBA on the basis of newly collected radiocarbon dates from southern Germany. Our intervention is a direct response to the results of that study. We fully agree with Stockhammer's et al. dating of the start of EBA, but propose a markedly different dating of the EBA/MBA transition. Our modelling of radiocarbon data demonstrates a statistically significant typological sequence of phases Bz A1, Bz A2 and Bz B and disproves their postulated chronological overlap. The linking of the archaeological relative-chronological system with absolute dates is of major importance to understanding the temporal dimension of the EBA phases.


Assuntos
Arqueologia/métodos , Cronologia como Assunto , Cultura , Datação Radiométrica/estatística & dados numéricos , Arqueologia/estatística & dados numéricos , Teorema de Bayes , Europa (Continente) , Modelos Estatísticos , Análise Espaço-Temporal
4.
Nat Commun ; 11(1): 1915, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313080

RESUMO

Genetic studies of Neolithic and Bronze Age skeletons from Europe have provided evidence for strong population genetic changes at the beginning and the end of the Neolithic period. To further understand the implications of these in Southern Central Europe, we analyze 96 ancient genomes from Switzerland, Southern Germany, and the Alsace region in France, covering the Middle/Late Neolithic to Early Bronze Age. Similar to previously described genetic changes in other parts of Europe from the early 3rd millennium BCE, we detect an arrival of ancestry related to Late Neolithic pastoralists from the Pontic-Caspian steppe in Switzerland as early as 2860-2460 calBCE. Our analyses suggest that this genetic turnover was a complex process lasting almost 1000 years and involved highly genetically structured populations in this region.


Assuntos
DNA Antigo , Evolução Molecular , Genética Populacional/história , Genoma Humano/genética , Arqueologia , DNA Mitocondrial/genética , Europa (Continente) , França , Alemanha , História Antiga , Humanos , Suíça , População Branca/genética
5.
Nat Ecol Evol ; 4(3): 324-333, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094538

RESUMO

It has been hypothesized that the Neolithic transition towards an agricultural and pastoralist economy facilitated the emergence of human-adapted pathogens. Here, we recovered eight Salmonella enterica subsp. enterica genomes from human skeletons of transitional foragers, pastoralists and agropastoralists in western Eurasia that were up to 6,500 yr old. Despite the high genetic diversity of S. enterica, all ancient bacterial genomes clustered in a single previously uncharacterized branch that contains S. enterica adapted to multiple mammalian species. All ancient bacterial genomes from prehistoric (agro-)pastoralists fall within a part of this branch that also includes the human-specific S. enterica Paratyphi C, illustrating the evolution of a human pathogen over a period of 5,000 yr. Bacterial genomic comparisons suggest that the earlier ancient strains were not host specific, differed in pathogenic potential and experienced convergent pseudogenization that accompanied their downstream host adaptation. These observations support the concept that the emergence of human-adapted S. enterica is linked to human cultural transformations.


Assuntos
Salmonella enterica , Animais , Genoma Bacteriano , Humanos
6.
Sci Rep ; 8(1): 14075, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30232341

RESUMO

In the last decade, ancient DNA research has grown rapidly and started to overcome several of its earlier limitations through Next-Generation-Sequencing (NGS). Among other advances, NGS allows direct estimation of sample contamination from modern DNA sources. First NGS-based approaches of estimating contamination measured heterozygosity. These measurements, however, could only be performed on haploid genomic regions, i.e. the mitochondrial genome or male X chromosomes, but provided no measures of contamination in the nuclear genome of females with their two X chromosomes. Instead, female nuclear contamination is routinely extrapolated from mitochondrial contamination estimates, but it remains unclear if this extrapolation is reliable and to what degree variation in mitochondrial to nuclear DNA ratios affects this extrapolation. We therefore analyzed ancient DNA from 317 samples of different skeletal elements from multiple sites, spanning a temporal range from 7,000 BP to 386 AD. We found that the mitochondrial to nuclear DNA (mt/nc) ratio negatively correlates with an increase in endogenous DNA content and strongly influenced mitochondrial and nuclear contamination estimates in males. The ratio of mt to nc contamination estimates remained stable for overall mt/nc ratios below 200, as found particularly often in petrous bones but less in other skeletal elements and became more variable above that ratio.


Assuntos
Núcleo Celular/genética , DNA Antigo/análise , DNA Mitocondrial/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Osso e Ossos/química , Contaminação por DNA , Feminino , Haploidia , Humanos , Masculino , Análise de Sequência de DNA/métodos , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...