Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2406: 155-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089556

RESUMO

Recombinant expression of proteins in the periplasm of E. coli is frequently used for proteins containing disulfide bonds that are essential for protein folding and activity, as the cytosol of E. coli constitutes a reducing environment. The periplasm in contrast is an oxidative environment which supports proper protein folding. However, yields can be limited compared with cytoplasmic expression, and protocols must be adjusted to avoid overloading the periplasmic transportation machinery. Another less-appreciated issue with periplasmic expression is the potential generation of unwanted N-terminal cleavage products, a persistent issue which we encountered when expressing the disulfide bond containing extracellular regions of several Helicobacter pylori adhesins (BabA, BabB, BabC, and LabA) in the periplasm of E. coli XL10 GOLD, a strain traditionally not used for proteins expression. Here, we describe how introducing a C-terminal hexa-lysine (6 K) tag enhanced solubility and protected BabA from N-terminal proteolytic degradation (BabA), enabling crystallization and subsequent X-ray structural analysis. However. the same strategy had no advantageous effect for LabA, which using this protocol could be retrieved from the periplasm in relatively high yields (20-40 mg/L).


Assuntos
Proteínas de Escherichia coli , Periplasma , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/metabolismo
2.
Analyst ; 143(2): 536-548, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29239412

RESUMO

Human milk oligosaccharides (HMOs) afford many health benefits to breast-fed infants, such as protection against infection and regulation of the immune system, through the formation of non-covalent interactions with protein receptors. However, the molecular details of these interactions are poorly understood. Here, we describe the application of catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) for screening natural libraries of HMOs against lectins. The HMOs in the libraries were first identified based on molecular weights (MWs), ion mobility separation arrival times (IMS-ATs) and collision-induced dissociation (CID) fingerprints of their deprotonated anions. The libraries were then screened against lectins and the ligands identified from the MWs, IMS-ATs and CID fingerprints of HMOs released from the lectin in the gas phase. To demonstrate the assay, four fractions, extracted from pooled human milk and containing ≥35 different HMOs, were screened against a C-terminal fragment of human galectin-3 (hGal-3C), for which the HMOs specificities have been previously investigated, and a fragment of the blood group antigen-binding adhesin (BabA) from Helicobacter pylori, for which the HMO specificities have not been previously established. The structures of twenty-one ligands, corresponding to both neutral and acidic HMOs, of hGal-3C were identified; all twenty-one were previously shown to be ligands for this lectin. The presence of HMO ligands at six other MWs was also ascertained. Application of the assay to BabA revealed nineteen specific HMO structures that are recognized by the protein and HMO ligands at two other MWs. Notably, it was found that BabA exhibits broad specificity for HMOs, and recognizes both neutral HMOs, including non-fucosylated ones, and acidic HMOs. The results of competitive binding experiments indicate that HMOs can interact with BabA at previously unknown binding sites. The affinities of eight purified HMOs for BabA were measured by ESI-MS and found to be in the 103 M-1 to 104 M-1 range.


Assuntos
Lectinas/química , Leite Humano/química , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray , Humanos , Ligantes , Bibliotecas de Moléculas Pequenas
3.
Sci Adv ; 1(7): e1500315, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26601230

RESUMO

Helicobacter pylori is a leading cause of peptic ulceration and gastric cancer worldwide. To achieve colonization of the stomach, this Gram-negative bacterium adheres to Lewis(b) (Le(b)) antigens in the gastric mucosa using its outer membrane protein BabA. Structural information for BabA has been elusive, and thus, its molecular mechanism for recognizing Le(b) antigens remains unknown. We present the crystal structure of the extracellular domain of BabA, from H. pylori strain J99, in the absence and presence of Le(b) at 2.0- and 2.1-Å resolutions, respectively. BabA is a predominantly α-helical molecule with a markedly kinked tertiary structure containing a single, shallow Le(b) binding site at its tip within a ß-strand motif. No conformational change occurs in BabA upon binding of Le(b), which is characterized by low affinity under acidic [K D (dissociation constant) of ~227 µM] and neutral (K D of ~252 µM) conditions. Binding is mediated by a network of hydrogen bonds between Le(b) Fuc1, GlcNAc3, Fuc4, and Gal5 residues and a total of eight BabA amino acids (C189, G191, N194, N206, D233, S234, S244, and T246) through both carbonyl backbone and side-chain interactions. The structural model was validated through the generation of two BabA variants containing N206A and combined D233A/S244A substitutions, which result in a reduction and complete loss of binding affinity to Le(b), respectively. Knowledge of the molecular basis of Le(b) recognition by BabA provides a platform for the development of therapeutics targeted at inhibiting H. pylori adherence to the gastric mucosa.

4.
Protein Expr Purif ; 106: 25-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25448827

RESUMO

Helicobacter pylori is a pathogenic bacterium that has the remarkable ability to withstand the harsh conditions of the stomach for decades. This is achieved through unique evolutionary adaptations, which include binding Lewis(b) antigens found on the gastric epithelium using the outer membrane protein BabA. We show here the yield of a recombinant form of BabA, comprising its putative extracellular binding domain, can be significantly increased through the addition of a hexa-lysine tag to the C-terminus of the protein. BabA was expressed in the periplasmic space of Escherichia coli and purified using immobilised metal ion affinity and size exclusion chromatography - yielding approximately 1.8 mg of protein per litre of culture. The hexa-lysine tag does not inhibit the binding activity of BabA as the recombinant protein was found to possess affinity towards HSA-Lewis(b) glycoconjugates.


Assuntos
Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Bioquímica/métodos , Lisina/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Adesinas Bacterianas/química , Sequência de Aminoácidos , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Helicobacter pylori , Espectrometria de Massas , Dados de Sequência Molecular , Periplasma/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Corantes de Rosanilina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...