Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(35): 13114-13123, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607349

RESUMO

Current understanding of atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) is limited in alpine areas due to complex meteorology and topography. To better understand atmospheric transport in these areas, we measured 16 PAHs in lichens, biomonitors of atmospheric PAHs, along three transects extending from a highway into otherwise remote alpine valleys. While the valleys neighbored one another and were morphologically similar, they differed in their orientation relative to regional winds. In the valley characterized by regional winds oriented up-valley, PAH concentrations in lichens remained consistent across the transect. In the other two valleys, where regional winds were oriented down or across the valley, 3-6 ring PAHs declined rapidly with increasing distance from the highway, and PAH concentrations in the lichens declined more rapidly for higher molecular weight PAHs than lower molecular weight PAHs. We hypothesize that this trend was driven by differences in gas-particle partitioning and vegetative scavenging between PAH congeners. These results illustrate the importance of both physical transport and chemical partitioning in alpine areas where small differences in topography can lead to significant differences in chemical transport.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Vento , Meio Ambiente , Meteorologia , Peso Molecular
2.
J Hazard Mater ; 443(Pt B): 130235, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368064

RESUMO

Chlorinated paraffins (CPs), particularly short-chain CPs (SCCPs), have been reported in human blood with high detection frequency and often high variation among individuals. However, factors associated with and their contributions to inter-individual variability in SCCP concentrations in human blood have not been assessed. In this study, we first measured SCCP concentrations in 57 human blood samples collected from individuals living in the same vicinity in China. We then used the PROduction-To-Exposure model to investigate the impacts of variations in sociodemographic data, biotransformation rates, dietary patterns, and indoor contamination on inter-individual variability in SCCP concentrations in human blood. Measured ∑SCCP concentrations varied by a factor of 10 among individuals with values ranging from 122 to 1230 ng/g, wet weight. Model results show that age, sex, body weight, and dietary composition played a minor role in causing variability in ∑SCCP concentrations in human blood given that modeled ∑SCCP concentrations ranged over a factor of 2 - 3 correlated to the variations of these factors. In contrast, variations in the modeled ΣSCCP concentrations increased to factors of 6 and 8 when variability in biotransformation rates and indoor contamination were considered, respectively, indicating these two factors could be the most influential on inter-individual variability in SCCP concentrations in human blood.


Assuntos
Hidrocarbonetos Clorados , Parafina , Humanos , Parafina/análise , Hidrocarbonetos Clorados/análise , Monitoramento Ambiental/métodos , China
3.
J Hazard Mater ; 443(Pt A): 130090, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36279653

RESUMO

As demand for sustainable marine aquaculture (mariculture) and marine food supply surges worldwide, there is a growing need for new tools to assess mariculture impacts on local ecosystems, including the cycling of toxic organic contaminants. With this in mind, we developed the Contaminant Fate in Aquaculture-Modified Ecosystems (CFAME) model. The current model was designed to explore the fate of mariculture-derived organic contaminants in the Marlborough Sounds, New Zealand, known for its Chinook salmon farming industry. Model evaluation indicated robust model design, with 80% of modeled concentrations falling within a factor of ten of measured ones for native biota. Model results showed that mariculture was a source of organic contaminants in the sediment even at the Marlborough Sounds regional level and in wild marine fishes with high trophic levels near the farm area. Future research attention should be directed toward measuring chemicals with low log KAW (<0) and high log KOW values (e.g., >3) in sediment, and chemicals with log KOW values of 3-9 in wild fish.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Ecossistema , Aquicultura , Peixes , Cadeia Alimentar , Monitoramento Ambiental/métodos
4.
Environ Sci Technol ; 56(18): 13058-13065, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067451

RESUMO

Leaf-air partition coefficient (Kleaf-air) values are needed to understand and predict pesticide volatilization and persistence in agroecosystems. The objectives of this work were to measure Kleaf-air values and foliar penetration for the insecticide chlorpyrifos (as an active ingredient alone and in a pesticide formulation) on alfalfa (lucerne) leaves at a range of temperatures and relative humidities and when using leaves collected in different summer months. Kleaf-air values were measured using a solid-phase fugacity meter. A portion of the leaves were also used for foliar penetration experiments. Kleaf-air values for chlorpyrifos as an active ingredient alone decreased with temperature, while the effects of temperature on chlorpyrifos in the formulation were negligible. No correlations between Kleaf-air values and relative humidity were observed. Foliar penetration increased with temperature for chlorpyrifos both as an active ingredient and in the formulation. Increasing foliar penetration with temperature is attributed to increasing diffusion into inner leaf layers. Both volatilization and foliar penetration affect the measured Kleaf-air values, so understanding the link between these processes is necessary to predict Kleaf-air values. The leaf collection date had a substantial effect on the measured Kleaf-air values, highlighting the need for a better understanding of the role of leaf properties on Kleaf-air.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Umidade , Inseticidas/análise , Praguicidas/análise , Folhas de Planta/química , Temperatura
5.
Environ Pollut ; 298: 118853, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35033615

RESUMO

Organic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises - What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand. The effect of assimilation of farm-derived organic matter on contaminant profiles differed among species during the controlled feeding experiment and demonstrated that migration of individuals to a farm-associated site has the potential to increase or decrease organic contaminant concentrations. Concentrations of PCBs in Parapercis colias (blue cod), a highly resident, long-lived fish, were significantly higher at farm sites than at reference sites. While these concentrations were relatively low in a global context, this result presents blue cod as an important candidate for future monitoring of organic contaminants around point sources. PCBs and PBDEs measured in wild marine species were all below limits set by the European Union, whereas concentrations of certain HUPs, specifically dichlorodiphenyltrichloroethane (DDT) and its degradation products and endosulfan, may be of concern as a consequence of alternative anthropogenic activities. Overall, feed imported to New Zealand had relatively low levels of most organic contaminants that, at current levels, are unlikely to result in significant ecological effects to wild communities in adjacent habitats.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Aquicultura , Ecossistema , Cromatografia Gasosa-Espectrometria de Massas , Éteres Difenil Halogenados , Humanos , Nova Zelândia , Bifenilos Policlorados/análise , Salmão , Poluentes Químicos da Água/análise
6.
Glob Chang Biol ; 27(21): 5469-5490, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418243

RESUMO

Sustainable management of freshwater and pesticide use is essential for mitigating the impacts of intensive agriculture in the context of a changing climate. To better understand how climate change will affect the vulnerability of freshwater ecosystems to chemical pollutants, more empirical evidence is needed on the combined effects of climatic and chemical stressors in environmentally realistic conditions. Our experiment provides the first empirical evaluation of stream macroinvertebrate community dynamics in response to one of the world's most widely used insecticides, imidacloprid, and increased water temperature. In a 7-week streamside experiment using 128 flow-through circular mesocosms, we investigated the effects of pulsed imidacloprid exposure (four environmentally relevant levels between 0 and 4.6 µg/L) and raised water temperature (ambient, 3°C above) on invertebrate communities representative of fast- and slow-flowing microhabitats. Invertebrate drift and insect emergence were monitored during three pesticide pulses (10 days apart), and benthic invertebrate communities were sampled after 24 days of heating and pesticide manipulations. All three manipulated factors strongly affected drift community composition. The first imidacloprid pulse and increased temperature had a greater impact on communities in fast-flowing mesocosms, which contained more pollution-sensitive EPT taxa (mayflies, stoneflies and caddisflies). Heating and imidacloprid caused increased emigration by drift, weak reductions in emergence, and negatively affected the benthic community. The combined effect of stressor manipulations and a 10-day natural heatwave drastically reduced relative abundances of EPT and insects overall and caused a shift to oligochaete-, crustacean- and gastropod-dominated communities. Contrary to our hypothesis, the very high yet realistic water temperatures reached in our experiment meant the negative effects of imidacloprid were clearest at ambient temperatures and fast flow. These findings demonstrate the potential combined impacts of imidacloprid contamination and heatwaves on freshwater invertebrate communities under future climate scenarios and highlight the need for more countries to take regulatory action to control neonicotinoid use.


Assuntos
Ephemeroptera , Inseticidas , Poluentes Químicos da Água , Animais , Ecossistema , Insetos , Inseticidas/toxicidade , Invertebrados , Neonicotinoides , Nitrocompostos , Rios , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Technol ; 55(10): 6773-6782, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33900727

RESUMO

Polychlorinated naphthalene (PCN) concentrations in the soil at an e-waste recycling area in Guiyu, China, were measured and the associated human cancer risk due to e-waste-related exposures was investigated. We quantified PCNs in the agricultural soil and used these concentrations with predictive equations to calculate theoretical concentrations in outdoor air. We then calculated theoretical concentrations in indoor air using an attenuation factor and in the local diet using previously published models for contaminant uptake in plants and fruits. Potential human cancer risks of PCNs were assessed for multiple exposure pathways, including soil ingestion, inhalation, dermal contact, and dietary ingestion. Our calculations indicated that local residents had a high cancer risk from exposure to PCNs and that the diet was the primary pathway of PCN exposure, followed by dermal contact as the secondary pathway. We next repeated the risk assessment using concentrations for other carcinogenic contaminants reported in the literature at the same site. We found that polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) and PCNs caused the highest potential cancer risks to the residents, followed by polychlorinated biphenyls (PCBs). The relative importance of different exposure pathways depended on the physicochemical properties of specific chemicals.


Assuntos
Resíduo Eletrônico , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , China , Dibenzofuranos , Dibenzofuranos Policlorados/análise , Detecção Precoce de Câncer , Monitoramento Ambiental , Humanos , Naftalenos/análise , Neoplasias/induzido quimicamente , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Medição de Risco , Solo
8.
Environ Sci Technol ; 55(8): 4842-4850, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33779156

RESUMO

Pesticide dissipation from plant surfaces depends on a variety of factors including meteorological conditions, the pesticide's physicochemical properties, and plant characteristics. Models already exist for describing pesticide behavior in agriculture fields; however, they do not account for pesticide-specific, condition-specific foliar photodegradation and the importance of this component in such models has not yet been investigated. We describe here the Pesticide Dissipation from Agricultural Land (PeDAL) model, which combines (a) multiphase partitioning to predict volatilization, (b) a new kinetics module for predicting photodegradation on leaf surfaces under varying light conditions based on location and timing, and (c) a generic foliar penetration component. The PeDAL model was evaluated by comparing measured pesticide dissipation rates from field experiments, described as the time for the pesticide concentration on leaves to decrease by half (DT50), to ones generated by the model when using the reported field conditions. A sensitivity analysis of the newly developed foliar photodegradation component was conducted. We also showed how the PeDAL could be used by applicators and regulatory agencies. First, we used the model to examine how pesticide application timing affects dissipation rates. Second, we demonstrated how the model can be used to produce emission flux values for use in atmospheric dispersion and transport models.


Assuntos
Praguicidas , Agricultura , Praguicidas/análise , Fotólise , Plantas , Volatilização
9.
Sci Total Environ ; 773: 145146, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582324

RESUMO

Local differences in trophic structure and composition of organic matter subsidies can influence the capacity of soft sediment communities to assimilate recycled organic matter from processes such as salmon farm enrichment. The present study combines biochemical analysis with biomass density information on soft sediment taxa collected within the depositional footprint of salmon farms and at reference sites in the Marlborough Sounds, New Zealand. Distinct biochemical signatures confirmed that the flux of organic matter from salmon farms was an important subsidy for soft sediment communities. Isotopic modelling demonstrated that the proportion of biomass supported by farm-derived organic matter did not change in a consistent pattern along the 300 m gradient from each farm site, whereas the average trophic level of communities decreased with increasing proximity to farms. High variability in both the total biomass and the distribution of biomass across trophic levels occurred among sites downstream of farms and among individual farms. Consequently, estimates of basal organic matter assimilation per unit area by communities differed by several orders of magnitude among sites. Total organic matter assimilation tended to decrease with increasing proximity to farms due to a shift towards a more detrital based community. Differences in basal organic matter assimilation among farms did not appear to be directly related to local flow regime, but instead was closely linked to differences in the soft sediment community composition likely influenced by an array of anthropogenic and environmental factors. The results presented here highlight the importance of considering local variability in basal organic matter source pools, and the potential for synergistic and cumulative effects to drive changes in food web trophodynamics when assessing the impacts of aquaculture on soft sediment communities.


Assuntos
Sedimentos Geológicos , Salmão , Animais , Aquicultura , Nova Zelândia , Alimentos Marinhos
10.
J Hazard Mater ; 405: 124117, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33129601

RESUMO

Short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were measured in tree bark samples. These samples were collected around a chemical industrial park containing several chlorinated paraffin (CP) production plants, in a nearby city (Zhengzhou), and along a transect between the industrial park and city. Theoretical air concentrations were back-calculated from concentrations in bark using a predictive equation for estimating equilibrium bark-air partition coefficients. We developed this equation from a series of previously published Kbark-air measurements. Comparison of the normalized concentration profiles along south to north transects showed that wind played only a minor role in CP concentrations and profiles in the region. Three distinct source profiles were found in the complex source region. A fingerprint analysis technique was used to quantify the contribution of each source to the CP burden at various locations along the transect. We found that CP profiles at sites up to 6 km from the industrial park were strongly influenced by CP plant emissions, whereas the sites located in the rural zone and rural-urban interface were influenced by a mixture of CP plant emissions and the neighboring city.


Assuntos
Hidrocarbonetos Clorados , Parafina , China , Meios de Cultura , Monitoramento Ambiental , Hidrocarbonetos Clorados/análise , Indústrias
11.
Sci Total Environ ; 754: 141941, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254881

RESUMO

The global intensification of agriculture has resulted in pesticides playing an increasingly important role as anthropogenic stressors and drivers of environmental change. There is also a growing need to determine if other environmental stressors, especially those predicted to worsen with climate change, interact with pesticides to alter their effects on non-target biota. Two such stressors are increased extreme temperature events and periods of food limitation. This study is the first to investigate the combined effects of the world's most widely used insecticide, imidacloprid, with heatwaves and food limitation on a freshwater animal. A 6-week, full-factorial laboratory experiment with Deleatidium spp. mayfly nymphs was performed to investigate the potential for direct and delayed interactive effects of simulated heatwaves and starvation with chronic exposure to a field-realistic concentration of imidacloprid (0.4 µg/L). The experiment included two 6-day simulated heatwaves, one during a starvation period prior to imidacloprid addition, and one during the first 6 days of imidacloprid exposure. The simulated heatwaves alone caused such drastic negative effects on Deleatidium survival and mobility that mainly antagonistic interactions were observed with the other stressors, though delayed synergisms between imidacloprid and the second heatwave also affected mayfly mobility. Time-cumulative toxicity of imidacloprid was evident, with imidacloprid first affecting mayfly mobility after 12 days but eventually causing the strongest effects of all manipulated stressors. However, lethal effects of imidacloprid could only be detected in the absence of heatwaves and starvation, possibly as a result of selection for stronger individuals due to prior exposure to these stressors. Our findings demonstrate that heatwaves of increasing severity will critically affect sensitive freshwater organisms such as mayflies, and that the impacts of widespread pesticide use on freshwater ecosystems under global climate change cannot be ignored.


Assuntos
Ephemeroptera , Inseticidas , Poluentes Químicos da Água , Animais , Ecossistema , Humanos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Rios , Poluentes Químicos da Água/toxicidade
12.
Sci Total Environ ; 761: 143263, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33246716

RESUMO

Contamination of the environment with toxic chemicals such as pesticides has become a global problem. Understanding the role of chemical contaminants as stressors in ecological systems is therefore an important research need in the 21st century. In surface freshwaters, mixtures of neonicotinoid insecticides are being detected around the world as more monitoring data become available. Combinations of imidacloprid, clothianidin and thiamethoxam are commonly found, but studies testing their combined toxicities to freshwater invertebrates are rare. Taking a multiple-stressor approach, we employed a full-factorial design to investigate the individual and combined chronic toxicities of these three neonicotinoids in a 28-day laboratory experiment using Deleatidium spp. mayfly nymphs. Imidacloprid (1.2 µg/L achieved concentration) reduced mayfly survival (by 50% on Day 28) and mobility (~100%) more than clothianidin (1.1 µg/L, affecting about 25% of individuals across the responses measured) and thiamethoxam (2.9 µg/L, affecting 12%). Imidacloprid interacted with the other two neonicotinoids to cause a greater-than-additive negative effect when combined until 25 days of exposure, after which the strong negative overall effects of imidacloprid prevented these interactions from being observed. Our findings represent a novel contribution to multiple-stressor research by demonstrating the combined effects of chronic exposure to environmentally relevant neonicotinoid concentrations on an ecologically important stream insect taxon. These results emphasise the higher toxicity of imidacloprid to non-target freshwater insects compared to clothianidin and thiamethoxam, implying that stricter regulation to control the use of imidacloprid may need to be prioritised to protect vulnerable aquatic insect populations that provide key links to terrestrial food webs. Finally, our study provides an ecological, multiple-stressor comparison for related ecotoxicological investigations indicating neonicotinoid mixtures can deviate from additive toxicity.


Assuntos
Ephemeroptera , Inseticidas , Poluentes Químicos da Água , Animais , Humanos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Rios , Poluentes Químicos da Água/toxicidade
13.
J Chromatogr A ; 1627: 461414, 2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823112

RESUMO

Various techniques have been evaluated for the extraction and cleanup of pesticides from environmental samples. In this work, a Selective Pressurized Liquid Extraction (SPLE) method for pesticides was developed using a Thermo Fisher Scientific Accelerated Solvent Extraction (ASE) system. This instrument was compared to the newly introduced (2017) extraction instrument, the Energized Dispersive Guided Extraction (EDGE) system, which combines Pressurized Liquid Extraction (PLE) and dispersive Solid Phase Extraction (dSPE). We first optimized the SPLE method using the ASE instrument for pesticide extraction from alfalfa leaves using layers of Florisil and graphitized carbon black (GCB) downstream of the leaf homogenate in the extraction cell (Layered ASE method). We then compared results obtained for alfalfa and citrus leaves with the Layered ASE method to those from a method in which the leaf homogenate and sorbents were mixed (Mixed ASE method) and to similar methods modified for use with EDGE (Layered EDGE and Mixed EDGE methods). The ASE and EDGE methods led to clear, colorless extracts with low residual lipid weight. No significant differences in residual lipid masses were observed between the methods. The UV-Vis spectra showed that Florisil removed a significant quantity of the light-absorbing chemicals, but that GCB was required to produce colorless extracts. Recoveries of spiked analytes into leaf homogenates were generally similar among methods, but in several cases, significantly higher recoveries were observed in ASE extracts. Nonetheless, no significant differences were observed among pesticide concentrations in field samples when calculated with the isotope dilution method in which labelled surrogates were added to samples before extraction. The extraction time with the ASE methods was ~45 minutes, which was ~4.5 times longer than with the EDGE methods. The EDGE methods used ~10 mL more solvent than the ASE methods. Based on these results, the EDGE is an acceptable extraction instrument and, for most compounds, the EDGE had a similar extraction efficiency to the ASE methods.


Assuntos
Técnicas de Química Analítica/métodos , Praguicidas/análise , Folhas de Planta/química , Solventes/química , Lipídeos/química , Medicago sativa/química , Resíduos de Praguicidas/análise , Extratos Vegetais/química , Espectrofotometria Ultravioleta
14.
Environ Sci Technol ; 54(12): 7302-7308, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32436696

RESUMO

A solid-phase fugacity meter was used to measure the soil-air partition coefficients of three semivolatile pesticides (chlorpyrifos, pyrimethanil, and trifluralin) in the absence of additional adjuvants (Ksoil-air,AI), as part of commercial formulations (Ksoil-air,formulation), and as formulation mixtures with an additional spray adjuvant added (Ksoil-air,formulation+spray adjuvant). Chlorpyrifos Ksoil-air,formulation values were also measured over 15-30 °C, allowing for the change in internal energy of the phase transfer reaction (Δsoil-airU) to be calculated and compared to the Δsoil-airU for Ksoil-air,AI from the literature. Measured Ksoil-air values were then used as input parameters in a pesticide volatilization model to understand how their variability affects pesticide volatilization rates under different conditions. Initial experiments conducted at ∼24 °C indicated that all pesticides volatilized more readily in the presence of adjuvants than in their absence and that the additional spray adjuvant had minimal impact. The Δsoil-airU values were 328 and 90 kJ/mol for chlorpyrifos in the absence and presence of formulation adjuvants, respectively, suggesting that adjuvants may weaken or disrupt intermolecular attractions between pesticide molecules and soil. At temperatures below 24.5 °C, modeled chlorpyrifos volatilization rates were higher in the presence of adjuvants than in their absence; however, the opposite occurred at temperatures above 24.5 °C.


Assuntos
Clorpirifos , Praguicidas , Poluentes do Solo , Praguicidas/análise , Solo , Poluentes do Solo/análise , Volatilização
15.
Sci Total Environ ; 698: 134264, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31494416

RESUMO

Phthalate esters (PAEs) have been shown to be ubiquitous in abiotic and biotic environmental compartments; however, information about bioaccumulation behavior and human exposure, both via environmental exposure and the diet, are limited. Herein, we report the concentrations and composition profiles of phthalate esters (PAEs) in biological samples, river water, indoor air, and outdoor air samples collected from an agricultural site in western China. Dibutyl phthalate (DNBP) occupied a relatively high abundance in biological samples, discrepant with the environmental samples in which di-(2-ethylhexyl) phthalate (DEHP) was the dominant congener. Significant correlations (P < 0.05) were observed between the biota and river water samples, indicating that river water heavily influenced PAE accumulation in biological samples. The mean log Bioaccumulation Factors (BAFs) varied from 0.91 to 2.96, which implies that most PAE congeners are not likely to accumulate in organisms. No obvious trends were observed between log octanol-water partition coefficient (KOW) and log BAF values, nor between log octanol-air partition coefficient (KOW) and biota-air accumulation factors (BAAFs). Nevertheless, the calculated log air-water partitioning factors (AWPFs) of diethyl phthalate (DEP), dimethyl phthalate (DMP), and butyl benzyl phthalate (BBP) were similar to predicted values whereas those for diisobutyl phthalate (DIBP), DNBP and DEHP were significantly higher. The estimated daily intakes of PAEs via food ingestion and environmental exposure were 15, 9.4 and 1.2 ng/kg-bw/day in toddlers, children and adults, respectively, laying at the low end of the reported data and well below the reference dose.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise , Ésteres/análise , Ácidos Ftálicos/análise , China , Dibutilftalato/análogos & derivados , Dibutilftalato/análise , Humanos
16.
Environ Sci Technol ; 54(4): 2202-2209, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31858785

RESUMO

The Pesticide Loss via Volatilization model was developed to predict and understand pesticide volatilization rates from a planted agricultural field. The model allows the user to adjust the properties of the pesticide, various soil and plant descriptors, and climatic conditions. A useful output from the model is the 24 h cumulative percentage volatilization (CPV24h) loss. The model was validated by comparing modeled CPV24h values to measured ones compiled from the literature. Sensitivity analysis showed that the plant intercept fraction (%I), leaf area index (LAI), and leaf height (hleaf) strongly affect volatilization rates of plant- and soil-sorbed pesticides whereas LAI, hleaf, and the percent of water on the plant surface strongly affect more water-soluble pesticides. The model showed that most pesticides volatilize more readily from plants than from soil and that volatilization rates vary significantly for certain pesticides (but not all) when applied to plants at different growth stages and for different species of plants. Results are displayed on chemical space diagrams to paint a clear picture of how CPV24h varies for chemicals with different properties under different conditions.


Assuntos
Praguicidas , Poluentes do Solo , Plantas , Solo , Volatilização
17.
Chemosphere ; 243: 125194, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31739250

RESUMO

A field study was conducted to further our understanding about the fate and transport of the organophosphate insecticide, chlorpyrifos, and its degradation product, chlorpyrifos oxon. Leaf, soil and air sampling was conducted for 21 days after chlorpyrifos application to a field of purple tansy (Phacelia tanacetifolia). Air samples were collected using a high-volume air sampler (HVAS) and seven battery-operated medium-volume active air samplers placed around the field and on a 500-m transect extending away from the field. Chlorpyrifos was detected every day of the sampling period in all matrices, with concentrations decreasing rapidly after application. Chlorpyrifos oxon was only detected in air samples collected with the HVAS during the first three days after application. Wind direction played a significant role in controlling the measured air concentrations in near-field samples. The SCREEN3 model and chlorpyrifos' Characteristic Travel Distance (CTD) were used to predict modelled chlorpyrifos concentrations in air along the transect. The concentration trend predicted by the SCREEN3 model was similar to that of measured concentrations whereas CTD-modelled concentrations decreased at a significantly slower rate, indicating that downwind chlorpyrifos concentrations in air were primarily controlled by air dispersion. The SCREEN3-predicted chlorpyrifos concentrations were >5 times higher than measured concentrations, indicating that simple approaches for calculating accurate pesticide volatilization fluxes from agricultural fields are still needed. Finally, we found that measured concentrations in air on Days 0-2 at locations up to 500 m from the field were at levels considered concerning for human health.


Assuntos
Clorpirifos/análise , Inseticidas/análise , Clorpirifos/análogos & derivados , Monitoramento Ambiental , Humanos , Modelos Químicos , Praguicidas/análise , Folhas de Planta/química , Solo , Volatilização , Vento
18.
Environ Pollut ; 254(Pt A): 112973, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31401523

RESUMO

New Zealand uses more than a ton of pesticides each year; many of these are mobile, relatively persistent, and can make their way into waterways. While considerable effort goes into monitoring nutrients in agricultural streams and programs exist to monitor pesticides in groundwater, very little is known about pesticide detection frequencies, concentrations, or their potential impacts in New Zealand streams. We used the 'Polar Organic Chemical Integrative Sampler' (POCIS) approach and grab water sampling to survey pesticide concentrations in 36 agricultural streams in Waikato, Canterbury, Otago and Southland during a period of stable stream flows in Austral summer 2017/18. We employed a new approach for calculating site-specific POCIS sampling rates. We also tested two novel passive samplers designed to reduce the effects of hydrodynamic conditions on sampling rates: the 'Organic-Diffusive Gradients in Thin Films' (o-DGT) aquatic passive sampler and microporous polyethylene tubes (MPTs) filled with Strata-X sorbent. Multiple pesticides were found at most sites; two or more were detected at 78% of sites, three or more at 69% of sites, and four or more at 39% of sites. Chlorpyrifos concentrations were the highest, with a maximum concentration of 180 ng/L. Concentrations of the other pesticides were generally below 20 ng/L. Mean concentrations of individual pesticides were not correlated with in-stream nutrient concentrations. The majority of pesticides were detected most frequently in POCIS, presumably due to its higher sampling rate and the relatively low concentrations of these pesticides. In contrast, chlorpyrifos was most frequently detected in grab samples. Chlorpyrifos concentrations at two sites were above the 21-day chronic 'No Observable Effect Concentration' (NOEC) values for fish and another two sites had concentrations greater than 50% of the NOEC. Otherwise, concentrations were well-below NOEC values, but close to the New Zealand Environmental Exposure Limits in several cases.


Assuntos
Clorpirifos/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Agricultura , Nova Zelândia , Estações do Ano
19.
Environ Toxicol Chem ; 38(11): 2459-2471, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373707

RESUMO

Neonicotinoid insecticides have been shown to have high chronic toxicity relative to acute toxicity, and therefore short-term toxicity tests ≤96 h in duration may underestimate their environmental risks. Among nontarget aquatic invertebrates, insects of the orders Diptera and Ephemeroptera have been found to be the most sensitive to neonicotinoids. To undertake a more accurate assessment of the risks posed by neonicotinoids to freshwater ecosystems, more data are needed from long-term tests employing the most sensitive taxa. Using nymphs of the common New Zealand mayfly genus Deleatidium spp., we performed 28-d static-renewal exposures with the widely used neonicotinoids imidacloprid, clothianidin, and thiamethoxam. We monitored survival, immobility, impairment, and mayfly moulting propensity at varying time points throughout the experiment. Imidacloprid and clothianidin exerted strong chronic toxicity effects on Deleatidium nymphs, with 28-d median lethal concentrations (LC50s) of 0.28 and 1.36 µg/L, respectively, whereas thiamethoxam was the least toxic, with a 28-d LC50 > 4 µg/L (highest concentration tested). Mayfly moulting propensity was also negatively affected by clothianidin (during 3 of 4 wk), imidacloprid (2 of 4 wk), and thiamethoxam (1 of 4 wk). Comparisons with published neonicotinoid chronic toxicity data for other mayfly taxa and larvae of the midge genus Chironomus showed similar sensitivities for mayflies and midges, suggesting that experiments using these taxa provide reliable assessments of the threats of neonicotinoids to the most vulnerable freshwater species. Environ Toxicol Chem 2019;38:2459-2471. © 2019 SETAC.


Assuntos
Ephemeroptera/efeitos dos fármacos , Neonicotinoides/toxicidade , Testes de Toxicidade Crônica , Animais , Exposição Ambiental/análise , Guanidinas/toxicidade , Inseticidas/toxicidade , Modelos Lineares , Muda/efeitos dos fármacos , Nova Zelândia , Nitrocompostos/toxicidade , Ninfa/efeitos dos fármacos , Análise de Sobrevida , Tiametoxam/toxicidade , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Technol ; 51(20): 11752-11760, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28925251

RESUMO

Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.


Assuntos
Camada de Gelo , Modelos Teóricos , Praguicidas , Lagos , Multimídia , Nova Zelândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...