Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 1010989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466426

RESUMO

One cluster of the extrapulmonary manifestations in chronic obstructive pulmonary disease (COPD) is related to the brain, which includes anxiety, depression and cognitive impairment. Brain-related comorbidities are related to worsening of symptoms and increased mortality in COPD patients. In this study, a murine model of COPD was used to examine the effects of emphysema and repetitive pulmonary inflammatory events on systemic inflammatory outcomes and brain function. In addition, the effect of a dietary intervention on brain-related parameters was assessed. Adult male C57Bl/6J mice were exposed to elastase or vehicle intratracheally (i.t.) once a week on three consecutive weeks. Two weeks after the final administration, mice were i.t. exposed to lipopolysaccharide (LPS) or vehicle for three times with a 10 day interval. A dietary intervention enriched with omega-3 PUFAs, prebiotic fibers, tryptophan and vitamin D was administered from the first LPS exposure onward. Behavior and cognitive function, the degree of emphysema and both pulmonary and systemic inflammation as well as blood-brain barrier (BBB) integrity and neuroinflammation in the brain were assessed. A lower score in the cognitive test was observed in elastase-exposed mice. Mice exposed to elastase plus LPS showed less locomotion in the behavior test. The enriched diet seemed to reduce anxiety-like behavior over time and cognitive impairments associated with the presented COPD model, without affecting locomotion. In addition, the enriched diet restored the disbalance in splenic T-helper 1 (Th1) and Th2 cells. There was a trend toward recovering elastase plus LPS-induced decreased expression of occludin in brain microvessels, a measure of BBB integrity, as well as improving expression levels of kynurenine pathway markers in the brain by the enriched diet. The findings of this study demonstrate brain-associated comorbidities - including cognitive and behavioral impairments - in this murine model for COPD. Although no changes in lung parameters were observed, exposure to the specific enriched diet in this model appeared to improve systemic immune disbalance, BBB integrity and derailed kynurenine pathway which may lead to reduction of anxiety-like behavior and improved cognition.

2.
BMJ Open ; 12(3): e059252, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296491

RESUMO

INTRODUCTION: Physical and mental health are often affected in chronic obstructive pulmonary disease (COPD) adversely affecting disease course and quality of life. Abnormalities in whole body and cellular energy metabolism, dietary and plasma nutrient status and intestinal permeability have been well established in these patients as systemic determinants of functional decline and underexplored treatable traits. The aim of this study is to investigate the efficacy of 1 year targeted nutrient supplementation on physical activity level and health-related quality of life in patients with COPD. METHODS AND ANALYSIS: This study is a single-centre randomised, placebo-controlled, double-blind trial in 166 patients with COPD recruited from multiple hospitals in the Netherlands. The intervention group will receive a multinutrient supplement, including vitamin D, tryptophan, long-chain polyunsaturated fatty acids and prebiotic dietary fibres as main components (94 kCal per daily dose). The control group will receive an isocaloric isonitrogenous placebo. Both groups will ingest one portion per day for at least 12 months and will additionally receive counselling on healthy lifestyle and medical adherence over the course of the study. Coprimary outcomes are physical activity assessed by triaxial accelerometry and health-related quality of life measured by the EuroQol-5 dimensions questionnaire. Secondary outcomes are cognitive function, psychological well-being, physical performance, patient-reported outcomes and the metabolic profile assessed by body composition, systemic inflammation, plasma nutrient levels, intestinal integrity and microbiome composition. Outcomes will be measured at baseline and after 12 months of supplementation. In case patients are hospitalised for a COPD exacerbation, a subset outcome panel will be measured during a 4-week recovery period after hospitalisation. ETHICS AND DISSEMINATION: This study was approved by the local Ethics Committee of Maastricht University. Subjects will be included after written informed consent is provided. Study outcomes will be disseminated through presentations at (inter)national conferences and through peer-reviewed journals. TRIAL REGISTRATION: NCT03807310.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Suplementos Nutricionais , Exercício Físico , Humanos , Nutrientes , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Nutrients ; 12(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207606

RESUMO

BACKGROUND: Through effects on nitric oxide bioavailability, vascular endothelial function is improved after the intake of a high amount of nitrate or L-arginine, but decreased after the intake of a high-fat meal. Therefore, we compared the effects of beetroot powder with or without L-arginine on postprandial brachial artery flow-mediated vasodilation (FMD) after consumption of a high-fat mixed-meal. METHODS: Eighteen abdominally obese men completed this randomized, double-blinded, cross-over trial. The study consisted of five test days, each separated by a wash-out period of at least one week. Participants received in random order, a blended meal with a control or nutritional supplement consisting of beetroot powder providing 200 mg nitrate, beetroot with 0.8 g of L-arginine, beetroot with 1.5 g of L-arginine, or 3.0 g of L-arginine. Participants then fasted and 2 h postprandial FMD measurements were performed. RESULTS: No significant differences between meals were observed for postprandial FMD (p = 0.45) levels. However, there was a non-significant trend towards a more beneficial postprandial FMD response with the beetroot-containing meals as compared with meals without beetroot. CONCLUSION: This trial could not provide evidence for beneficial additive effects of a single dose of beetroot powder combined with L-arginine on postprandial endothelial function in abdominally obese men.


Assuntos
Arginina/administração & dosagem , Beta vulgaris/química , Velocidade do Fluxo Sanguíneo/fisiologia , Endotélio Vascular/fisiopatologia , Obesidade Abdominal/fisiopatologia , Vasodilatação/efeitos dos fármacos , Idoso , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Glicemia , Artéria Braquial/fisiopatologia , Estudos Cross-Over , Suplementos Nutricionais , Endotélio Vascular/efeitos dos fármacos , Alimentos , Humanos , Insulina/sangue , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Período Pós-Prandial , Pós , Triglicerídeos/sangue , Rigidez Vascular/efeitos dos fármacos
4.
Nutr Rev ; 76(5): 372-379, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534224

RESUMO

Neuroinflammation has been implicated in the pathology of various psychiatric and neurodegenerative disorders. Accumulating evidence suggests that food components can modulate inflammatory processes, and therefore it could be hypothesized that such nutrients might exhibit therapeutic efficacy against these brain diseases. Rice bran is often discarded as a waste product, although it contains a wide range of potentially useful substances. Several rice fiber components from rice bran have been described as having antiinflammatory properties. This review summarizes the evidence supporting a modulatory effect of rice fiber components on symptoms in several animal models for neuroinflammation. In vitro studies on immune cells and in vivo studies on nutritional intervention in animal models of central and peripheral inflammation are discussed in the context of the potential use of rice fiber components for prevention and treatment of brain diseases in which neuroinflammation is involved.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibras na Dieta/uso terapêutico , Inflamação/tratamento farmacológico , Oryza/química , Extratos Vegetais/uso terapêutico , Sementes/química , Animais , Anti-Inflamatórios/farmacologia , Encefalopatias/tratamento farmacológico , Encefalopatias/patologia , Fibras na Dieta/farmacologia , Humanos , Modelos Animais , Extratos Vegetais/farmacologia
5.
J Alzheimers Dis ; 38(3): 459-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23985420

RESUMO

Synapse loss and synaptic dysfunction are pathological processes already involved in the early stages of Alzheimer's disease (AD). Synapses consist principally of neuronal membranes, and the neuronal and synaptic losses observed in AD have been linked to the degeneration and altered composition and structure of these membranes. Consequently, synapse loss and membrane-related pathology provide viable targets for intervention in AD. The specific nutrient combination Fortasyn Connect (FC) is designed to ameliorate synapse loss and synaptic dysfunction in AD by addressing distinct nutritional needs believed to be present in these patients. This nutrient combination comprises uridine, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium, and is present in Souvenaid, a medical food intended for use in early AD. It has been hypothesized that FC counteracts synaptic loss and reduces membrane-related pathology in AD by providing nutritional precursors and cofactors that act together to support neuronal membrane formation and function. Preclinical studies formed the basis of this hypothesis which is being validated in a broad clinical study program investigating the potential of this nutrient combination in AD. Memory dysfunction is one key early manifestation in AD and is associated with synapse loss. The clinical studies to date show that the FC-containing medical food improves memory function and preserves functional brain network organization in mild AD compared with controls, supporting the hypothesis that this intervention counteracts synaptic dysfunction. This review provides a comprehensive overview of basic scientific studies that led to the creation of FC and of its effects in various preclinical models.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Encéfalo/patologia , Suplementos Nutricionais , Sinapses/fisiologia , Animais , Humanos , Estado Nutricional , Sinapses/patologia
6.
J Alzheimers Dis ; 33(1): 177-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22914588

RESUMO

Diet is an important lifestyle factor implicated in the etiology of Alzheimer's disease (AD), but so far it is not fully elucidated to which nutrients the suggested protective effect of diet can be attributed. Recent evidence obtained in the amyloid-ß 1-42 (Aß(42)) infusion model in rats has shown that a multi-nutrient intervention known as Fortasyn™ Connect (FC) may protect the central cholinergic system against Aß(42)-induced toxicity. FC comprises the nutritional precursors and cofactors for membrane synthesis, viz. docosahexaenoic acid (DHA), eicosapentaenoic acid, uridine-mono-phosphate (UMP), choline, phospholipids, folic acid, vitamins B6, B12, C, E, and selenium. In order to investigate whether the combined administration of these nutrients may also affect AD-like pathology, we now evaluated the effects of the FC diet intervention in the transgenic AßPP(swe)/PS1(dE9) mouse model with endogenous Aß production. In addition we evaluated the effects of diets containing the individual nutrients DHA and UMP and their combination in this model. Between the age of 3 and 6 months, FC diet decreased brain Aß levels and amyloid plaque burden in the hippocampus of AßPP/PS1 mice. The FC diet also reduced ongoing disintegrative degeneration in the neocortex, as indicated by Amino Cupric Silver staining. Although all three DHA-containing diets were equally effective in changing brain fatty acid profiles, diets differentially affected amyloid-related measures, indicating that effects of DHA may depend on its dietary context. The current data, showing that dietary enrichment with FC reduces AD-like pathology in AßPP/PS1 mice, confirm and extend our previous findings in the Aß(42) infusion model and favor the combined administration of relevant nutrients.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Dieta/métodos , Alimentos , Presenilina-1/genética , Doença de Alzheimer/genética , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Nutr Metab (Lond) ; 9(1): 49, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22647268

RESUMO

BACKGROUND: Folate, vitamin B-12, and vitamin B-6 are essential nutritional components in one-carbon metabolism and are required for methylation capacity. The availability of these vitamins may therefore modify methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) by PE-N-methyltransferase (PEMT) in the liver. It has been suggested that PC synthesis by PEMT plays an important role in the transport of polyunsaturated fatty acids (PUFAs) like docosahexaenoic acid (DHA) from the liver to plasma and possibly other tissues. We hypothesized that if B-vitamin supplementation enhances PEMT activity, then supplementation could also increase the concentration of plasma levels of PUFAs such as DHA. To test this hypothesis, we determined the effect of varying the combined dietary intake of these three B-vitamins on plasma DHA concentration in rats. METHODS: In a first experiment, plasma DHA and plasma homocysteine concentrations were measured in rats that had consumed a B-vitamin-poor diet for 4 weeks after which they were either continued on the B-vitamin-poor diet or switched to a B-vitamin-enriched diet for another 4 weeks. In a second experiment, plasma DHA and plasma homocysteine concentrations were measured in rats after feeding them one of four diets with varying levels of B-vitamins for 4 weeks. The diets provided 0% (poor), 100% (normal), 400% (enriched), and 1600% (high) of the laboratory rodent requirements for each of the three B-vitamins. RESULTS: Plasma DHA concentration was higher in rats fed the B-vitamin-enriched diet than in rats that were continued on the B-vitamin-poor diet (P = 0.005; experiment A). Varying dietary B-vitamin intake from deficient to supra-physiologic resulted in a non-linear dose-dependent trend for increasing plasma DHA (P = 0.027; experiment B). Plasma DHA was lowest in rats consuming the B-vitamin-poor diet (P > 0.05 vs. normal, P < 0.05 vs. enriched and high) and highest in rats consuming the B-vitamin-high diet (P < 0.05 vs. poor and normal, P > 0.05 vs. enriched). B-vitamin deficiency significantly increased plasma total homocysteine but increasing intake above normal did not significantly reduce it. Nevertheless, in both experiments plasma DHA was inversely correlated with plasma total homocysteine. CONCLUSION: These data demonstrate that dietary folate, vitamin B-12, and vitamin B-6 intake can influence plasma concentration of DHA.

8.
J Neurochem ; 120(4): 631-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22146060

RESUMO

Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn™ Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn™ Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific combination of nutrients acts synergistically in enhancing muscarinic M1 receptor responses, probably by facilitating receptor-mediated G protein activation.


Assuntos
Micronutrientes/farmacologia , Receptor Muscarínico M1/fisiologia , Regulação para Cima/fisiologia , Animais , Células CHO , Carbacol/farmacologia , Cricetinae , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Humanos , Potenciais da Membrana/fisiologia , Micronutrientes/química , Células PC12 , Ligação Proteica , Ratos , Receptor Muscarínico M1/agonistas
9.
Br J Nutr ; 107(10): 1408-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21917195

RESUMO

Choline is an important component of the human diet and is required for the endogenous synthesis of choline-containing phospholipids, acetylcholine and betaine. Choline can also be synthesised de novo by the sequential methylation of phosphatidylethanolamine to phosphatidylcholine. Vitamins B6, B12 and folate can enhance methylation capacity and therefore could influence choline availability not only by increasing endogenous choline synthesis but also by reducing choline utilisation. In the present experiment, we determined whether combined supplementation of these B vitamins affects plasma choline concentration in a rat model of mild B vitamin deficiency which shows moderate increases in plasma homocysteine. To this end, we measured plasma choline and homocysteine concentrations in rats that had consumed a B vitamin-poor diet for 4 weeks after which they were either continued on the B vitamin-poor diet or switched to a B vitamin-enriched diet for another 4 weeks. Both diets contained recommended amounts of choline. Rats receiving the B vitamin-enriched diet showed higher plasma choline and lower plasma homocysteine concentrations as compared to rats that were continued on the B vitamin-poor diet. These data underline the interdependence between dietary B vitamins and plasma choline concentration, possibly via the combined effects of the three B vitamins on methylation capacity.


Assuntos
Colina/sangue , Dieta , Suplementos Nutricionais , Homocisteína/sangue , Metilação/efeitos dos fármacos , Complexo Vitamínico B/farmacologia , Deficiência de Vitaminas do Complexo B/complicações , Animais , Disponibilidade Biológica , Ácido Fólico/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Vitamina B 12/farmacologia , Vitamina B 6/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...