Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864192

RESUMO

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Assuntos
Ecossistema , Mucinas , Mucinas/metabolismo , Polissacarídeos/metabolismo , Bactérias/metabolismo
2.
Proc Biol Sci ; 289(1974): 20212486, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506221

RESUMO

For antibiotic resistance to arise, new resistant mutants must establish in a bacterial population before they can spread via natural selection. Comprehending the stochastic factors that influence mutant establishment is crucial for a quantitative understanding of antibiotic resistance emergence. Here, we quantify the single-cell establishment probability of four Escherichia coli strains expressing ß-lactamase alleles with different activity against the antibiotic cefotaxime, as a function of antibiotic concentration in both unstructured (liquid) and structured (agar) environments. We show that concentrations well below the minimum inhibitory concentration (MIC) can substantially hamper establishment, particularly for highly resistant mutants. While the pattern of establishment suppression is comparable in both tested environments, we find greater variability in establishment probability on agar. Using a simple branching model, we investigate possible sources of this stochasticity, including environment-dependent lineage variability, but cannot reject other possible causes. Lastly, we use the single-cell establishment probability to predict each strain's MIC in the absence of social interactions. We observe substantially higher measured than predicted MIC values, particularly for highly resistant strains, which indicates cooperative effects among resistant cells at large cell numbers, such as in standard MIC assays.


Assuntos
Escherichia coli , beta-Lactamas , Ágar/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Testes de Sensibilidade Microbiana , beta-Lactamas/farmacologia
3.
Front Microbiol ; 12: 698970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489889

RESUMO

For a better understanding of the evolution of antibiotic resistance, it is imperative to study the factors that determine the initial establishment of mutant resistance alleles. In addition to the antibiotic concentration, the establishment of resistance alleles may be affected by interactions with the surrounding susceptible cells from which they derive, for instance via the release of nutrients or removal of the antibiotic. Here, we investigate the effects of social interactions with surrounding susceptible cells on the establishment of Escherichia coli mutants with increasing ß-lactamase activity (i.e., the capacity to hydrolyze ß-lactam antibiotics) from single cells under the exposure of the antibiotic cefotaxime (CTX) on agar plates. We find that relatively susceptible cells, expressing a ß-lactamase with very low antibiotic-hydrolyzing activity, increase the probability of mutant cells to survive and outgrow into colonies due to the active breakdown of the antibiotic. However, the rate of breakdown by the susceptible strain is much higher than expected based on its low enzymatic activity. A detailed theoretical model suggests that this observation may be explained by cell filamentation causing delayed lysis. While susceptible cells may hamper the spread of higher-resistant ß-lactamase mutants at relatively high frequencies, our findings show that they promote their initial establishment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...