Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1509, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707699

RESUMO

Macrophages are traditionally considered antigen-presenting cells. However, their ability to present antigen and the factors regulating macrophage MHCII expression are poorly understood. Here, we demonstrate that MHCII expression on murine intestinal macrophages is differentially controlled by their residence in the small intestine (SI) or the colon, their ontogeny and the gut microbiota. Monocyte-derived macrophages are uniformly MHCIIhi, independently of the tissue of residence, microbial status or the age of the mouse, suggesting a common monocyte differentiation pathway. In contrast, MHCII expression on long-lived, prenatally-derived Tim4+ macrophages is low after birth but significantly increases at weaning in both SI and colon. Furthermore, MHCII expression on colonic Tim4+, but not monocyte-derived macrophages, is dependent on recognition of microbial stimuli, as MHCII expression is significantly downregulated in germ-free, antibiotic-treated and MyD88 deficient mice. To address the function of MHCII presentation by intestinal macrophages we established two models of macrophage-specific MHCII deficiency. We observed a significant reduction in the overall frequency and number of tissue-resident, but not newly arrived, SI CD4+ T cells in the absence of macrophage-expressed MHCII. Our data suggest that macrophage MHCII provides signals regulating gut CD4+ T cell maintenance with different requirements in the SI and colon.


Assuntos
Macrófagos , Microbiota , Animais , Camundongos , Colo , Homeostase , Intestino Delgado/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II/metabolismo
2.
Cell Host Microbe ; 30(11): 1630-1645.e25, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208631

RESUMO

Microbiome research needs comprehensive repositories of cultured bacteria from the intestine of mammalian hosts. We expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes strain-level diversity, small-sized bacteria, and previously undescribed taxa (one family, 10 genera, and 39 species). This collection enabled metagenome-educated prediction of synthetic communities (SYNs) that capture key functional differences between microbiomes, notably identifying communities associated with either resistance or susceptibility to DSS-induced colitis. Additionally, nine species were used to amend the Oligo-Mouse Microbiota (OMM)12 model, yielding the OMM19.1 model. The added strains compensated for phenotype differences between OMM12 and specific pathogen-free mice, including body composition and immune cells in the intestine and associated lymphoid tissues. Ready-to-use OMM stocks are available for future studies. In conclusion, this work improves our knowledge of gut microbiota diversity in mice and enables functional studies via the modular use of isolates.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Microbioma Gastrointestinal/genética , Bactérias , Metagenoma , Intestinos , Modelos Animais de Doenças , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...