Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 24(22): 3496-510, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24048452

RESUMO

Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the "autocrine extracellular matrix (ECM) deposition" fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell-directed movement.


Assuntos
Moléculas de Adesão Celular/genética , Movimento Celular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Pericárdio/metabolismo , Animais , Comunicação Autócrina , Células COS , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chlorocebus aethiops , Embrião de Mamíferos , Endossomos/metabolismo , Endossomos/ultraestrutura , Matriz Extracelular/ultraestrutura , Fibronectinas/genética , Fibronectinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pericárdio/citologia , Cultura Primária de Células , Transdução de Sinais , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura
2.
EMBO J ; 29(3): 532-45, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20057356

RESUMO

Blood vessel/epicardial substance (Bves) is a transmembrane protein that influences cell adhesion and motility through unknown mechanisms. We have discovered that Bves directly interacts with VAMP3, a SNARE protein that facilitates vesicular transport and specifically recycles transferrin and beta-1-integrin. Two independent assays document that cells expressing a mutated form of Bves are severely impaired in the recycling of these molecules, a phenotype consistent with disruption of VAMP3 function. Using Morpholino knockdown in Xenopus laevis, we demonstrate that elimination of Bves function specifically inhibits transferrin receptor recycling, and results in gastrulation defects previously reported with impaired integrin-dependent cell movements. Kymographic analysis of Bves-depleted primary and cultured cells reveals severe impairment of cell spreading and adhesion on fibronectin, indicative of disruption of integrin-mediated adhesion. Taken together, these data demonstrate that Bves interacts with VAMP3 and facilitates receptor recycling both in vitro and during early development. Thus, this study establishes a newly identified role for Bves in vesicular transport and reveals a novel, broadly applied mechanism governing SNARE protein function.


Assuntos
Proteínas Musculares/fisiologia , Vesículas Transportadoras/metabolismo , Proteínas de Xenopus/fisiologia , Animais , Transporte Biológico/genética , Células COS , Adesão Celular/genética , Células Cultivadas , Chlorocebus aethiops , Cães , Embrião não Mamífero , Integrina beta1/metabolismo , Integrina beta1/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Distribuição Tecidual , Transferrina/metabolismo , Vesículas Transportadoras/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Proteína 3 Associada à Membrana da Vesícula/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
3.
PLoS One ; 3(5): e2261, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18493308

RESUMO

While Blood vessel epicardial substance (Bves) confers adhesive properties, the molecular mechanism of regulating this activity is unknown. No predicted functional motifs in this highly conserved integral membrane protein, other than the transmembrane domain, have been identified. Here, we report for the first time that Bves interacts with itself through an intracellular interaction domain that is essential for its intercellular adhesion activity. Glutathione-S-transferase (GST) pull-down and SPOTs analyses mapped this domain to amino acids 268-274 in the intracellular C-terminus. Site-directed mutagenesis revealed that lysines 272 and 273 are essential for homodimerization and cell adhesion. Human corneal cells transfected with wild-type Bves trafficked the protein to the cell surface, assembled junction complexes and formed epithelial sheets. In contrast, cells expressing Bves mutated at these positions did not form continuous epithelial sheets or maintain junctional proteins such as ZO-1 and E-cadherin at the membrane. A dramatic reduction in transepithelial electrical resistance was also observed indicating a functional loss of tight junctions. Importantly, expression of mutated Bves in epithelial cells promoted the transformation of cells from an epithelial to a mesenchymal phenotype. This study is the first to demonstrate the essential nature of any domain within Bves for maintenance of epithelial phenotype and function.


Assuntos
Vasos Sanguíneos/fisiologia , Proteínas de Membrana/fisiologia , Animais , Células COS , Moléculas de Adesão Celular , Chlorocebus aethiops , Córnea/irrigação sanguínea , Glutationa Transferase/química , Glutationa Transferase/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Musculares , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...