Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806673

RESUMO

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Assuntos
Ciclo do Carbono , Microbiota , Pergelissolo , Polifenóis , Microbiologia do Solo , Polifenóis/metabolismo , Pergelissolo/microbiologia , Bactérias/metabolismo , Bactérias/genética , Bactérias/enzimologia , Bactérias/classificação , Carbono/metabolismo , Oxirredução , Regiões Árticas , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/genética , Solo/química , Ecossistema
2.
Nat Commun ; 12(1): 2466, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927199

RESUMO

Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Compostos Orgânicos/metabolismo , Polifenóis/metabolismo , Poluentes do Solo/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Microbiota/fisiologia , Compostos Orgânicos/química , Solo/química , Microbiologia do Solo , Áreas Alagadas
3.
Plant Environ Interact ; 2(1): 1-15, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37283848

RESUMO

Accumulation of certain phenolics is a well-known response of plants to enhanced UVB radiation (280-315 nm), but few experiments have compared the relative importance of different phenolic groups for UVB resilience. To study how an altered phenolic profile affects the responses and resilience of silver birch (Betula pendula) to enhanced UVB, we used RNA interference (RNAi) targeting dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS), or anthocyanidin reductase (ANR) to change the accumulation of phenolics. The unmodified control line and RNAi-modified plants were grown for 51 days under ambient or +32% enhanced UVB dose in a greenhouse. RNAi greatly affected phenolic profile and plant growth. There were no interactive effects of RNAi and UVB on growth or photosynthesis, which indicates that the RNAi and unmodified control plants were equally resilient. UVB enhancement led to an accumulation of foliar flavonoids and condensed tannins, and an increase in the density of stem glands and glandular trichomes on upper leaf surfaces in both the control and RNAi-modified plants. Our results do not indicate a photoprotective role for condensed tannins. However, decreased growth of high-flavonoid low-tannin DFRi and ANRi plants implies that the balance of flavonoids and condensed tannins might be important for normal plant growth.

4.
J Agric Food Chem ; 68(47): 14038-14048, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170695

RESUMO

Proanthocyanidins (condensed tannins) are important in food chemistry, agriculture, and health, driving demand for improvements in structure determination. We used ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) methods to determine the exact composition of individual species in heterogeneous mixtures of proanthocyanidin polymers from Sorghum bicolor grain and Neptunia lutea leaves. Fragmentation patterns obtained with FT-ICR ESI MS-MS (electrospray ionization) confirmed structural details from thiolysis-high-performance liquid chromatography (HPLC)-diode array detection (DAD) and 1H-13C heteronuclear single quantum coherence (HSQC) NMR. We found that A-type linkages were characteristic of shorter polymers in predominantly B-linked proanthocyanidin. We suggest that supramolecular complex formation between proanthocyanidins and matrix components such as 2,5-dihydroxybenzoic acid was responsible for anomalous 152 dalton peaks, incorrectly assigned as 3-O-galloylation, when using FT-ICR matrix-assisted laser desorption ionization (MALDI-MS). Our data illustrate the power of the ultrahigh resolution FT-ICR methods but include the caveat that MALDI-MS must be paired with complementary analytical tools to avoid artifacts.


Assuntos
Fabaceae , Proantocianidinas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
J Chem Ecol ; 46(2): 217-231, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879865

RESUMO

Despite active research, antiherbivore activity of specific plant phenolics remains largely unresolved. We constructed silver birch (Betula pendula) lines with modified phenolic metabolism to study the effects of foliar flavonoids and condensed tannins on consumption and growth of larvae of a generalist herbivore, the autumnal moth (Epirrita autumnata). We conducted a feeding experiment using birch lines in which expression of dihydroflavonol reductase (DFR), anthocyanidin synthase (ANS) or anthocyanidin reductase (ANR) had been decreased by RNA interference. Modification-specific effects on plant phenolics, nutrients and phenotype, and on larval consumption and growth were analyzed using uni- and multivariate methods. Inhibiting DFR expression increased the concentration of flavonoids at the expense of condensed tannins, and silencing DFR and ANR decreased leaf and plant size. E. autumnata larvae consumed on average 82% less of DFRi plants than of unmodified controls, suggesting that flavonoids or glandular trichomes deter larval feeding. However, larval growth efficiency was highest on low-tannin DFRi plants, indicating that condensed tannins (or their monomers) are physiologically more harmful than non-tannin flavonoids for E. autumnata larvae. Our results show that genetic manipulation of the flavonoid pathway in plants can effectively be used to produce altered phenolic profiles required for elucidating the roles of low-molecular weight phenolics and condensed tannins in plant-herbivore relationships, and suggest that phenolic secondary metabolites participate in regulation of plant growth.


Assuntos
Betula/química , Flavonoides/metabolismo , Mariposas/fisiologia , Plantas Geneticamente Modificadas/química , Taninos/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Betula/enzimologia , Betula/parasitologia , Flavonoides/farmacologia , Herbivoria/efeitos dos fármacos , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Oxigenases/antagonistas & inibidores , Oxigenases/genética , Oxigenases/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , Taninos/farmacologia
6.
Biomolecules ; 9(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694323

RESUMO

Polyphenols such as epigallocatechin gallate (EGCg) may have roles in preventing some chronic diseases when they are ingested as components of plant-based foods and beverages. Human serum albumin (HSA) is a multi-domain protein that binds various ligands and aids in their transport, distribution, and metabolism in the circulatory system. In the present study, the HSA-EGCg interaction in the absence or presence of fatty acid has been investigated. Förster resonance energy transfer (FRET) was used to determine inter- and intra-domain distances in the protein with and without EGCg and palmitic acid (PA). By labeling Cys-34 with 7-(diethyl amino)-4-methylcoumarin 3-maleimide (CPM), the distance between Trp-214 at domain IIA and CPM-Cys-34 at domain IA could be established. A small amount of PA decreased the distance, while a large amount increased the distance up to 5.4 Å. EGCg increased the inter-domain distance in HSA and HSA-PA up to 2.8 and 7.6 Å, respectively. We concluded that PA affects protein conformation more significantly compared to EGCg. Circular dichroism (CD) established that EGCg affects protein secondary structure more significantly than PA. PA had little effect on the α-helix content of HSA, while EGCg decreased the α-helix content in a dose-dependent fashion. Moreover, EGCg decreased α-helix content in HSA and HSA-PA to the same level. Dynamic light scattering (DLS) data revealed that both PA and EGCg increased HSA aggregation. EGCg increased HSA aggregation more significantly and promoted formation of aggregates that were more heterogenous. Any of these effects could impact the ability of serum albumin to transport and stabilize ligands including EGCg and other polyphenols.


Assuntos
Ácido Palmítico/farmacologia , Polifenóis/farmacologia , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Chá/química , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Moleculares , Ácido Palmítico/química , Extratos Vegetais/química , Polifenóis/química , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína/efeitos dos fármacos
7.
Molecules ; 23(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142930

RESUMO

Previous studies showed that a series of purified condensed tannins (CTs) from warm-season perennial legumes exhibited high variability in their modulation of methane production during in vitro rumen digestion. The molecular weight differences between these CTs did not provide correlation with either the in vitro CH4 production or the ability to precipitate bovine serum albumin. In an effort to delineate other structure-activity relationships from these methane abatement experiments, the structures of purified CTs from these legumes were assessed with a combination of methanolysis, quantitative thiolysis, ¹H-13C HSQC NMR spectroscopy and ultrahigh-resolution MALDI-TOF MS. The composition of these CTs is very diverse: procyanidin/prodelphinidin (PC/PD) ratios ranged from 98/2 to 2/98; cis/trans ratios ranged from 98/2 to 34/66; mean degrees of polymerization ranged from 6 to 39; and % galloylation ranged from 0 to 75%. No strong correlation was observed between methane production and the protein precipitation capabilities of the CT towards three different proteins (BSA, lysozyme, and alfalfa leaf protein) at ruminal pH. However, a strong non-linear correlation was observed for the inhibition of methane production versus the antioxidant activity in plant sample containing typical PC- and PD-type CTs. The modulation of methane production could not be correlated to the CT structure (PC/PD or cis/trans ratios and extent of galloylation). The most active plant in methane abatement was Acacia angustissima, which contained CT, presenting an unusual challenge as it was resistant to standard thiolytic degradation conditions and exhibited an atypical set of cross-peak signals in the 2D NMR. The MALDI analysis supported a 5-deoxy flavan-3-ol-based structure for the CT from this plant.


Assuntos
Acacia/química , Taninos/química , Fabaceae/química , Espectroscopia de Ressonância Magnética , Metano , Proantocianidinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
J Agric Food Chem ; 64(47): 8994-9003, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27809509

RESUMO

Many food and forage plants contain tannins, high molecular weight polyphenols that characteristically interact strongly with protein, forming complexes that affect taste, nutritional quality, and the health of the consumer. In the present study, the interaction between bovine serum albumin (BSA) and each of seven hydrolyzable tannins or epigallocatechin gallate was examined. The objective was to define the effect of tannin oxidation, measured as oxidative activity (browning) or as oxidizability (degradation monitored by HPLC), on the formation on highly stabilized tannin-protein complexes and to determine how the reaction depended on the pH conditions. Gel electrophoresis and MALDI-TOF-MS were used to assess the formation of tannin-protein complexes. The results showed that tannin oxidizability was directly correlated with the tendency of the tannins to form highly stabilized complexes with BSA at increased pH (7.6). However, at slightly lower pH (6.7), other tannin features, such as the size and flexibility of the tannin, appeared to dictate the formation of highly stabilized tannin-protein complexes.


Assuntos
Taninos Hidrolisáveis/química , Soroalbumina Bovina/química , Antioxidantes/química , Catequina/análogos & derivados , Catequina/química , Concentração de Íons de Hidrogênio , Peso Molecular , Oxirredução , Polifenóis/química , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
J Agric Food Chem ; 64(15): 3025-33, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27022835

RESUMO

Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al(3+) and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and 6. We used spectrophotometric titration and chemometric modeling to determine stability constants and stoichiometries for the aluminum-phenol (AlL) complexes. The structures and spectral features of aluminum-methyl gallate complexes were evaluated with quantum chemical calculations. The high molecular weight polyphenols formed Al3L2 complexes with conditional stability constants (ß) ∼ 1 × 10(23) at pH 6 and AlL complexes with ß âˆ¼ 1 × 10(5) at pH 4. Methyl gallate formed AlL complexes with ß = 1 × 10(6) at pH 6 but did not complex aluminum at pH 4. At intermediate metal-to-polyphenol ratios, high molecular weight polyphenols formed insoluble Al complexes but methyl gallate complexes were soluble. The high molecular weight polyphenols have high affinities and solubility features that are favorable for a role in aluminum detoxification in the environment.


Assuntos
Alumínio/química , Compostos Organometálicos/química , Plantas/metabolismo , Polifenóis/química , Alumínio/análise , Alumínio/metabolismo , Eucalyptus/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Concentração de Íons de Hidrogênio , Taninos Hidrolisáveis/química , Peso Molecular , Polifenóis/análise , Polifenóis/metabolismo , Rumex/metabolismo , Solubilidade
11.
Biomed Res Int ; 2014: 950516, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24719897

RESUMO

Lifelong physical inactivity is associated with morbidity in adulthood, possibly influenced by changes in gene and protein expressions occurring earlier in life. mRNA (Affymetrix gene array) and proteomic (2D-DIGE MALDI-TOF/MS) analyses were determined in cardiac tissue of young (3 months) and old (16 months) Sprague-Dawley rats housed with no access to physical activity (SED) versus an exercise wheel (EX). Unfavorable phenotypes for body weight, dyslipidemia, and tumorogenesis appeared more often in adult SED versus EX. No differentially expressed genes (DEGs) occurred between groups at 3 or 16 months. Within groups, SED and EX shared 215 age-associated DEGs. In SED, ten unique DEGs occurred with age; three had cell adhesion functions (fn1, lgals3, ncam2). In EX, five unique DEGs occurred with age; two involved hypothalamic, pituitary, and gonadal hormone axis (nrob2, xpnpep2). Protein expression involved in binding, sugar metabolic processes, and vascular regulation declined with age in SED (KNT1, ALBU, GPX1, PYGB, LDHB, G3P, PYGM, PGM1, ENOB). Protein expression increased with age in EX for ATP metabolic processes (MYH6, MYH7, ATP5J, ATPA) and vascular function (KNT1, ALBU, GPX1). Differences in select gene and protein expressions within sedentary and active animals occurred with age and contributed to distinct health-related phenotypes in adulthood.


Assuntos
Regulação da Expressão Gênica/fisiologia , Condicionamento Físico Animal , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/fisiologia , Ratos , Ratos Sprague-Dawley
12.
J Agric Food Chem ; 62(17): 3768-75, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24712545

RESUMO

The principal green tea polyphenol, (-)-epigallocatechin-3-O-gallate (EGCg), may provide chemoprotection against conditions ranging from cardiovascular disease to cancer. Binding to plasma proteins stabilizes EGCg during its transport to targeted tissues. This study explored the details EGCg binding to bovine serum albumin. Both fluorescence lifetime and intensity data showed that the hydrophobic pocket between subdomains IIA and IIIA is the binding site for EGCg. Fluorescence and circular dichroism were used to establish the roles of the flavan-3-ol and galloyl moieties of the EGCg in binding and to demonstrate a binding-dependent conformational change in the protein. Competitive binding experiments confirmed the location of binding, and molecular modeling identified protein residues that play key roles in the interaction. This model of EGCg-BSA interactions improves the understanding of the likely physiological fate of this green tea-derived bioactive polyphenol.


Assuntos
Catequina/análogos & derivados , Flavonoides/química , Albumina Sérica/química , Animais , Catequina/química , Bovinos , Cinética , Estrutura Molecular , Ligação Proteica
13.
Plant Physiol Biochem ; 72: 190-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23545181

RESUMO

High molecular weight polyphenols (e.g. tannins) that enter the soil may affect microbial populations, by serving as substrates for microbial respiration or by selecting for certain microbes. In this study we examined how three phenolic compounds that represent some environmentally widespread tannins or their constituent functional groups were respired by soil microorganisms and how the compounds affected the abundance and diversity of soil bacteria and archaea, including ammonia oxidizers. An acidic, silt loam soil from a pine forest was incubated for two weeks with the monomeric phenol methyl gallate, the small polyphenol epigallocatechin gallate, or the large polyphenol oenothein B. Respiration of the polyphenols during the incubation was measured using the Microresp™ system. After incubation, metabolic diversity was determined by community level physiological profiling (CLPP), and genetic diversity was determined using denaturing gradient gel electrophoresis (DGGE) analysis on DNA extracted from the soil samples. Total microbial populations and ammonia-oxidizing populations were measured using real time quantitative polymerase chain reaction (qPCR). Methyl gallate was respired more efficiently than the higher molecular weight tannins but not as efficiently as glucose. Methyl gallate and epigallocatechin gallate selected for genetically or physiologically unique populations compared to glucose. None of the polyphenols supported microbial growth, and none of the polyphenols affected ammonia-oxidizing bacterial populations or ammonia-oxidizing archaea. Additional studies using both a wider range of polyphenols and a wider range of soils and environments are needed to elucidate the role of polyphenols in determining soil microbiological diversity.


Assuntos
Polifenóis/farmacologia , Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Polifenóis/química , Microbiologia do Solo , Taninos/química , Taninos/farmacologia
14.
Toxicon ; 67: 71-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23500065

RESUMO

To elucidate the anti-venom mechanism of persimmon tannin, the interaction between a polymeric persimmon proanthocyanidin fraction (PT40) and phospholipase A2 (PLA2) or bovine serum albumin (BSA) were studied using a competitive binding assay and spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), and resonance light scattering (RLS) spectroscopy. The results revealed that PT40 has a higher affinity for PLA2 than for BSA at physiological pH and induced greater conformational changes in PLA2 than in BSA. PT40 covalently bound to PLA2 in a reaction probably involving Lys residues. We propose that the high affinity of PT40 for PLA2 and the covalent modification of PLA2 by PT40 may be responsible for the ability of the tannin to irreversibly inhibit PLA2 catalytic activity, to prevent edema, and to neutralize the lethality of Chinese cobra PLA2 in vivo.


Assuntos
Diospyros/química , Venenos Elapídicos/enzimologia , Fosfolipases A2/química , Proantocianidinas/química , Soroalbumina Bovina/química , Animais , Ligação Competitiva , Bovinos , Dicroísmo Circular/métodos , Elapidae/fisiologia , Luz , Inibidores de Fosfolipase A2 , Extratos Vegetais/química , Espalhamento de Radiação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Curr Drug Metab ; 14(4): 432-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23330924

RESUMO

The plant natural products known as polyphenols are found at micronutrient levels in fruits, vegetables, and plant-based beverages such as wine, tea, coffee and cocoa. Consumption of a fruit- and vegetable-rich diet, the "Mediterranean diet", has been epidemiologically related to health benefits especially for chronic diseases including diabetes, cardiovascular disease, and Alzheimer's disease. The abundance of polyphenols in plant-rich diets, and the potent bioactivities of polyphenols, provide indirect evidence for a role for polyphenols in maintaining good health. However, molecular mechanisms for therapeutic or preventative activity have not been demonstrated in vivo. We summarize the chemical classes of natural polyphenols, their bioactivities and bioavailability and metabolism. Because many polyphenols bind protein, we focus on the potential of protein binding to mediate the health-related effects of polyphenols. We discuss interactions with plasma proteins as the first target organ past the digestive tract for these orally-ingested compounds.


Assuntos
Proteínas Sanguíneas/metabolismo , Polifenóis/farmacologia , Animais , Doença Crônica , Humanos , Ligação Proteica
16.
Chemosphere ; 90(6): 1870-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23149187

RESUMO

Polyphenols including tannins comprise a large percentage of plant detritus such as leaf litter, and affect soil processes including metal dynamics. We tested the effects of tannins on soil metal mobilization by determining the binding stoichiometries of two model polyphenols to Al(III) and Fe(III) using micelle-mediated separation and inductively coupled plasma optical emission spectroscopy (ICP-OES). By fitting the data to the Langmuir model we found the higher molecular weight polyphenol (oenothein B) was able to bind more metal than the smaller polyphenol (epigallocatechin gallate, EGCg). For example, oenothein B bound 9.43 mol Fe mol(-1), while EGCg bound 4.41 mol of Fe mol(-1). Using the parameters from the binding model, we applied the Langmuir model for competitive binding to predict binding for mixtures of Al(III) and Fe(III). Using the parameters from the single metal experiments and information about polyphenol sorption to soils we built a model to predict metal mobilization from soils amended with polyphenols. We tested the model with three natural soils and found that it predicted mobilization of Fe and Al with r(2)=0.92 and r(2)=0.88, respectively. The amount of metal that was mobilized was directly proportional to the maximum amount of metal bound to the polyphenol. The secondary parameter in each model was the amount of weak organically chelated Fe or Al that was in the soil. This study provides the first compound-specific information about how natural polyphenols interact with metals in the environment. We propose a model that is applicable to developing phytochelation agents for metal detoxification, and we discuss how tannins may play a role in metal mobilization from soils.


Assuntos
Metais/química , Polifenóis/química , Poluentes do Solo/química , Solo/química , Monitoramento Ambiental , Metais/análise , Modelos Químicos , Poluentes do Solo/análise
17.
Food Res Int ; 49(1): 112-116, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23028206

RESUMO

Polyphenols found in foods and beverages are under intense scrutiny for their potential beneficial effects on human health. We examined the stability of two bioactive polyphenols, epigallocatechin-O-gallate (EGCg) and 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG), in a model digestive system at low oxygen tension with and without added digestive components and foods. Both compounds were stable at pH values of 5-6 and below, indicating gastric stability. Both compounds decomposed at pH 7.0. PGG was stabilized in a model system containing pepsin, pancreatin, bile and lipase, and/or baby food, but was not stabilized by dry cereal. EGCg was not stabilized by the addition of any biomolecule. The effects of polyphenols on human health should be evaluated in the context of their stability in the digestive tract with and without added digestive components and/or food.

18.
J Agric Food Chem ; 59(12): 6783-9, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21574575

RESUMO

Polyphenols are bioactive natural products that appear to act against a wide range of pathologies. Mechanisms of activity have not been established, but recent studies have suggested that some polyphenols bind to membranes. This study examined the interaction between lipid bilayers and three structurally diverse polyphenols. It was hypothesized that features of the polyphenols such as polarity, molecular size, molecular geometry, and number and arrangement of phenol hydroxyl groups would determine the tendency to interact with the bilayer. The examined compounds included a mixed polyphenol, (-)-epigallocatechin gallate (EGCg); a proanthocyanidin trimer comprising catechin-(4→8)-catechin-(4→8)-catechin (cat3; and a hydrolyzable tannin, 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG). These polyphenols were incorporated at different levels into ²H-labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) multilamellar vesicles (MLVs). ³¹P and ²H solid-state NMR experiments were performed to determine the dynamics of the headgroup region and the hydrophobic acyl chain region of the lipid bilayer upon addition of polyphenols. The chemical shift anisotropy (CSA) width of the ³¹P NMR spectra decreased upon addition of polyphenols. Addition of PGG induces a dramatic reduction on the CSA width compared with the control lipid bilayer sample, whereas addition of cat3 barely reduces the CSA width. The ²H quadupolar splitting of the lipids also decreased upon addition of polyphenols. At the same concentration, PGG substantially reduced the quadrupolar splitting, whereas cat3 barely reduced it when compared with the control sample. From a calculation of the order parameters of the acyl chain region of the lipid bilayer, it was concluded that the hydrophobic part of the lipid bilayer was perturbed by PGG, whereas cat3 did not cause large perturbations. The data suggest that the polarity of the polyphenols affects the interaction between tannins and membranes. The interactions may relate to the biological activities of polyphenols.


Assuntos
Flavonoides/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/métodos , Fenóis/química , Polifenóis
19.
Anal Bioanal Chem ; 401(5): 1523-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21400190

RESUMO

The bioactivities and bioavailability of plant polyphenols including proanthocyanidins and other catechin derivatives may be affected by covalent reaction between polyphenol and proteins. Both processing conditions and gastrointestinal conditions may promote formation of covalent complexes for polyphenol-rich foods and beverages such as wine. Little is known about covalent reactions between proteins and tannin, because suitable methods for quantitating covalent complexes have not been developed. We established capillary electrophoresis methods that can be used to distinguish free protein from covalently bound protein-polyphenol complexes and to monitor polyphenol oxidation products. The methods are developed using the model protein bovine serum albumin and the representative polyphenol (-)epigallocatechin gallate. By pairing capillaries with different diameters with appropriate alkaline borate buffers, we are able to optimize resolution of either the protein-polyphenol complexes or the polyphenol oxidation products. This analytical method, coupled with purification of the covalent complexes by diethylaminoethyl cellulose chromatography, should facilitate characterization of covalent complexes in polyphenol-rich foods and beverages such as wine.


Assuntos
Catequina/análogos & derivados , Eletroforese Capilar/métodos , Polifenóis/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Catequina/metabolismo , Bovinos , Análise de Alimentos/métodos , Sensibilidade e Especificidade , Vinho/análise
20.
J Chem Ecol ; 37(1): 57-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21116841

RESUMO

The literature on proanthocyanidins (tannins) in ecological systems is dominated by quantitative studies. Despite evidence that the qualitative characteristics (subunit type, polymer chain length) of these complex polyphenolics are important determinants of biological activity, little is known about genetic and environmental controls on the type of proanthocyanidins produced by plants. We tested the hypothesis that genetics, season, developmental stage, and environment determine proanthocyanidin qualitative characteristics by using four Populus "cross types" (narrowleaf [P. angustifolia], Fremont [P. fremontii], F1 hybrids, and backcrosses to narrowleaf). We used thiolysis and HPLC analysis to characterize the proanthocyanidins, and found that genetics strongly control composition. The narrowleaf plants accumulate mixed procyanidin/prodelphinidins with average composition epicatechin(11)-epigallocatechin(8)-catechin(2)-catechin((terminal)). Backcross genotypes produce mixed procyanidin/prodelphinidins similar to narrowleaf, while Fremont makes procyanidin dimers, and the F1 plants contain procyanidin heptamers. Less striking effects were noted for genotype × environment, while season and developmental zone had little effect on proanthocyanidin composition or chain length. We discuss the metabolic and ecological consequences of differences in condensed tannin qualitative traits.


Assuntos
Genes de Plantas , Populus/metabolismo , Proantocianidinas/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroquímica , Hibridização Genética , Espectrometria de Massas , Folhas de Planta/metabolismo , Populus/genética , Espectrofotometria Ultravioleta , Taninos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...