Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38798575

RESUMO

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.

2.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586056

RESUMO

Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that normally terminates at PWAR1 in non-neurons. qRTPCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11,834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.

3.
Elife ; 102021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605404

RESUMO

Enhancers are cis-regulatory elements that play critical regulatory roles in modulating developmental transcription programs and driving cell-type-specific and context-dependent gene expression in the brain. The development of massively parallel reporter assays (MPRAs) has enabled high-throughput functional screening of candidate DNA sequences for enhancer activity. Tissue-specific screening of in vivo enhancer function at scale has the potential to greatly expand our understanding of the role of non-coding sequences in development, evolution, and disease. Here, we adapted a self-transcribing regulatory element MPRA strategy for delivery to early postnatal mouse brain via recombinant adeno-associated virus (rAAV). We identified and validated putative enhancers capable of driving reporter gene expression in mouse forebrain, including regulatory elements within an intronic CACNA1C linkage disequilibrium block associated with risk in neuropsychiatric disorder genetic studies. Paired screening and single enhancer in vivo functional testing, as we show here, represents a powerful approach towards characterizing regulatory activity of enhancers and understanding how enhancer sequences organize gene expression in the brain.


Assuntos
Encéfalo/metabolismo , Elementos Facilitadores Genéticos , Animais , Encéfalo/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos
4.
J Food Prot ; 83(11): 1934-1940, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502236

RESUMO

ABSTRACT: As the number of farmers' markets and other direct-to-consumer marketing channels increases, it is crucial to understand the potential risks associated with consuming directly marketed animal products and fresh produce. The overall aim of this project was to assess the prevalence of Salmonella and Escherichia coli in animal products and produce sold at farmers' markets in Northern California and to evaluate the food safety risks associated with consuming meat (e.g., beef, pork, and poultry) and fresh produce purchased from farmers' markets. Animal products and produce were purchased from a total of 44 certified farmers' markets in Northern California. Salmonella was found in 6 (1.8%) of 338 animal products and in 0 (0%) of 128 produce samples; E. coli was found in 40 (31.3%) of 128 fresh produce samples. E. coli concentration in produce ranged from 0 to 2.96, with an overall average of 0.13 log (most probable number + 1)/100 mL. Salmonella isolates were resistant to nalidixic acid and tetracycline. The results from this study highlight the need for further training on mitigation strategies to reduce contamination of animal products and fresh produce by foodborne pathogens.


Assuntos
Escherichia coli , Fazendeiros , Animais , California , Bovinos , Humanos , Carne , Prevalência , Salmonella
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...