Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drug Deliv Sci Technol ; 74: 103541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35774068

RESUMO

Chronic lung diseases such as asthma, chronic obstructive pulmonary disease, lung cancer, and the recently emerged COVID-19, are a huge threat to human health, and among the leading causes of global morbidity and mortality every year. Despite availability of various conventional therapeutics, many patients remain poorly controlled and have a poor quality of life. Furthermore, the treatment and diagnosis of these diseases are becoming increasingly challenging. In the recent years, the application of nanomedicine has become increasingly popular as a novel strategy for diagnosis, treatment, prevention, as well as follow-up of chronic lung diseases. This is attributed to the ability of nanoscale drug carriers to achieve targeted delivery of therapeutic moieties with specificity to diseased site within the lung, thereby enhancing therapeutic outcomes of conventional therapies whilst minimizing the risks of adverse reactions. For this instance, monoolein is a polar lipid nanomaterial best known for its versatility, thermodynamic stability, biocompatibility, and biodegradability. As such, it is commonly employed in liquid crystalline systems for various drug delivery applications. In this review, we present the applications of monoolein as a novel nanomaterial-based strategy for targeted drug delivery with the potential to revolutionize therapeutic approaches in chronic lung diseases.

2.
Life Sci ; 300: 120574, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469915

RESUMO

Liposomes, vesicles composed of a phospholipid bilayer, are considered a remarkably advanced drug delivery system due to their unique properties, including their biocompatibility and biodegradability, and their capability to reduce toxicity of encapsulated drugs. The in vivo fate of an encapsulated drug in the form of liposome depends on both the drug and the liposome characteristics and the patient pathophysiology. In this review, the impact of the physicochemical properties of liposomes (lipid composition, size and charge) on their pharmacokinetics (systemic absorption, distribution and clearance) was discussed. In the rest, a comprehensive overview of different mechanisms of liposomal uptake by the cells (fusion, lipid transfer, and endocytosis) was provided. The importance of lipid composition and size of liposomes, cell type, and protein corona for each uptake pathway was explained.


Assuntos
Lipossomos , Fosfolipídeos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Endocitose , Humanos , Lipossomos/química
3.
Front Microbiol ; 12: 713703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512591

RESUMO

There is a high incidence of upper respiratory viral infections in the human population, with infection severity being unique to each individual. Upper respiratory viruses have been associated previously with secondary bacterial infection, however, several cross-sectional studies analyzed in the literature indicate that an inverse relationship can also occur. Pathobiont abundance and/or bacterial dysbiosis can impair epithelial integrity and predispose an individual to viral infection. In this review we describe common commensal microorganisms that have the capacity to reduce the abundance of pathobionts and maintain bacterial symbiosis in the upper respiratory tract and discuss the potential and limitations of localized probiotic formulations of commensal bacteria to reduce the incidence and severity of viral infections.

4.
Curr Mol Pharmacol ; 14(3): 333-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33557743

RESUMO

Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are major inflammatory respiratory diseases. Current mainstay therapy for asthma, and chronic obstructive pulmonary disease are corticosteroids, which have well-established side effect profiles. Phospholipids (PLs) are ubiquitous, diverse compounds with varying functions such as their structural role in the cell membrane, energy storage, and cell signaling. Recent advances in understanding PLs role as inflammatory mediators in the body as well as their widespread long-standing use as carrier molecules in drug delivery demonstrate the potential application of PLs in modulating inflammatory conditions. This review briefly explains the main mechanisms of inflammation in chronic respiratory diseases, current anti-inflammatory treatments and areas of unmet need. The structural features, roles of endogenous and exogenous phospholipids, including their use as pharmaceutical excipients, are reviewed. Current research on the immunomodulatory properties of PLs and their potential application in inflammatory diseases is the major section of this review. Considering the roles of PLs as inflammatory mediators and their safety profile established in pharmaceutical formulations, these small molecules demonstrate great potential as candidates in respiratory inflammation. Future studies need to focus on the immunomodulatory properties and the underlying mechanisms of PLs in respiratory inflammatory diseases.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Fosfolipídeos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Sistema Respiratório/metabolismo
5.
Curr Pharm Des ; 26(42): 5380-5392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33198611

RESUMO

Cell Signaling pathways form an integral part of our existence that allows the cells to comprehend a stimulus and respond back. Such reactions to external cues from the environment are required and are essential to regulate the normal functioning of our body. Abnormalities in the system arise when there are errors developed in these signals, resulting in a complication or a disease. Presently, respiratory diseases contribute to being the third leading cause of morbidity worldwide. According to the current statistics, over 339 million people are asthmatic, 65 million are suffering from COPD, 2.3 million are lung cancer patients and 10 million are tuberculosis patients. This toll of statistics with chronic respiratory diseases leaves a heavy burden on society and the nation's annual health expenditure. Hence, a better understanding of the processes governing these cellular pathways will enable us to treat and manage these deadly respiratory diseases effectively. Moreover, it is important to comprehend the synergy and interplay of the cellular signaling pathways in respiratory diseases, which will enable us to explore and develop suitable strategies for targeted drug delivery. This review, in particular, focuses on the major respiratory diseases and further provides an in-depth discussion on the various cell signaling pathways that are involved in the pathophysiology of respiratory diseases. Moreover, the review also analyses the defining concepts about advanced nano-drug delivery systems involving various nanocarriers and propose newer prospects to minimize the current challenges faced by researchers and formulation scientists.


Assuntos
Asma , Neoplasias Pulmonares , Tuberculose , Asma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos
6.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076522

RESUMO

Current therapeutic options for obesity often require pharmacological intervention with dietary restrictions. Obesity is associated with underlying inflammation due to increased tissue macrophage infiltration, and recent evidence shows that inflammation can drive obesity, creating a feed forward mechanism. Therefore, targeting obesity-induced macrophage infiltration may be an effective way of treating obesity. Here, we developed cargo-less liposomes (UTS-001) using 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (synthetic phosphatidylcholine) as a single-agent to manage weight gain and related glucose disorders due to high fat diet (HFD) consumption in mice. UTS-001 displayed potent immunomodulatory properties, including reducing resident macrophage number in both fat and liver, downregulating liver markers involved in gluconeogenesis, and increasing marker involved in thermogenesis. As a result, UTS-001 significantly enhanced systemic glucose tolerance in vivo and insulin-stimulated cellular glucose uptake in vitro, as well as reducing fat accumulation upon ad libitum HFD consumption in mice. UTS-001 targets tissue residence macrophages to suppress tissue inflammation during HFD-induced obesity, resulting in improved weight control and glucose metabolism. Thus, UTS-001 represents a promising therapeutic strategy for body weight management and glycaemic control.


Assuntos
Lipossomos/uso terapêutico , Obesidade/tratamento farmacológico , Fosfatidilcolinas/uso terapêutico , Células 3T3-L1 , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Gluconeogênese , Lipossomos/química , Lipossomos/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Termogênese
7.
Eur J Pharm Biopharm ; 157: 47-58, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33065219

RESUMO

Inflammation, the major hallmark of all chronic respiratory diseases is generally managed by inhaled corticosteroids. However, long term high dose treatment can result in significant side effects. Hence, there is a medical need for non-steroidal anti-inflammatory therapies to address airway inflammation. Phospholipids have been shown to reduce inflammation in several inflammatory conditions; however, their clinical translation has been limited to liposomal formulations traditionally used as drug carriers and their biological activity has not been investigated. Here we report the first application of empty liposomes as an anti-inflammatory treatment in airway inflammation. In the current study, liposomes (UTS-001) were prepared from cholesterol and a synthetic phospholipid (DOPC). The formulation was characterised in terms of size, charge, polydispersity index, morphology and stability as colloidal suspension and freeze-dried nanoparticles. Time-dependant uptake of UTS-001 in airway epithelial cells was observed which was inhibited by nystatin demonstrating that the uptake is via the caveolae pathway. In-vitro, in primary nasal epithelial cells, UTS-001 treatment successfully attenuated IL-6 levels following TNF-α stimulation. Consistent with the in-vitro findings, in-vivo, in the ovalbumin model of allergic airway inflammation, UTS-001 significantly reduced total immune cell counts in bronchoalveolar lavage fluid and reduced airway hyperresponsiveness in response to increasing doses of methacholine challenge. Therefore, our results establish UTS-001 as a potential anti-inflammatory treatment that may be useful as a therapeutic for lung inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Colesterol/farmacologia , Mucosa Nasal/efeitos dos fármacos , Fosfatidilcolinas/farmacologia , Pneumonia/prevenção & controle , Hipersensibilidade Respiratória/prevenção & controle , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Linhagem Celular , Colesterol/administração & dosagem , Colesterol/química , Coloides , Modelos Animais de Doenças , Composição de Medicamentos , Feminino , Humanos , Interleucina-6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Nanopartículas , Mucosa Nasal/metabolismo , Ovalbumina , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Am J Respir Cell Mol Biol ; 60(5): 541-553, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30383396

RESUMO

Current asthma therapies fail to target airway remodeling that correlates with asthma severity driving disease progression that ultimately leads to loss of lung function. Macroautophagy (hereinafter "autophagy") is a fundamental cell-recycling mechanism in all eukaryotic cells; emerging evidence suggests that it is dysregulated in asthma. We investigated the interrelationship between autophagy and airway remodeling and assessed preclinical efficacy of a known autophagy inhibitor in murine models of asthma. Human asthmatic and nonasthmatic lung tissues were histologically evaluated and were immunostained for key autophagy markers. The percentage area of positive staining was quantified in the epithelium and airway smooth muscle bundles using ImageJ software. Furthermore, the autophagy inhibitor chloroquine was tested intranasally in prophylactic (3 wk) and treatment (5 wk) models of allergic asthma in mice. Human asthmatic tissues showed greater tissue inflammation and demonstrated hallmark features of airway remodeling, displaying thickened epithelium (P < 0.001) and reticular basement membrane (P < 0.0001), greater lamina propria depth (P < 0.005), and increased airway smooth muscle bundles (P < 0.001) with higher expression of Beclin-1 (P < 0.01) and ATG5 (autophagy-related gene 5) (P < 0.05) together with reduced p62 (P < 0.05) compared with nonasthmatic control tissues. Beclin-1 expression was significantly higher in asthmatic epithelium and ciliated cells (P < 0.05), suggesting a potential role of ciliophagy in asthma. Murine asthma models demonstrated effective preclinical efficacy (reduced key features of allergic asthma: airway inflammation, airway hyperresponsiveness, and airway remodeling) of the autophagy inhibitor chloroquine. Our data demonstrate cell context-dependent and selective activation of autophagy in structural cells in asthma. Furthermore, this pathway can be effectively targeted to ameliorate airway remodeling in asthma.


Assuntos
Antiasmáticos/farmacologia , Asma/tratamento farmacológico , Proteína 5 Relacionada à Autofagia/genética , Autofagia/efeitos dos fármacos , Proteína Beclina-1/genética , Cloroquina/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Asma/genética , Asma/metabolismo , Asma/patologia , Autofagia/genética , Proteína 5 Relacionada à Autofagia/antagonistas & inibidores , Proteína 5 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/antagonistas & inibidores , Proteína Beclina-1/metabolismo , Estudos de Casos e Controles , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cultura Primária de Células , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
10.
J Pharm Sci ; 108(4): 1401-1403, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30465781

RESUMO

Fluticasone propionate uptake in the presence of a proprietary cell-penetrating peptide (human stimulus factor, [HSF]) based on the N-terminal domain of lactoferrin was studied, alone and in combination with salmeterol, using an air interface Calu-3 epithelial model. The HSF enhanced uptake and transport of fluticasone propionate across the epithelial barrier when alone and in presence of salmeterol. This was attributed to transcellular-mediated uptake. This HSF is a promising peptide for delivery of therapeutics where enhanced epithelial penetrating is required.


Assuntos
Broncodilatadores/administração & dosagem , Portadores de Fármacos/farmacologia , Lactoferrina/farmacologia , Peptídeos/farmacologia , Mucosa Respiratória/metabolismo , Administração por Inalação , Asma/tratamento farmacológico , Broncodilatadores/farmacocinética , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Portadores de Fármacos/química , Combinação de Medicamentos , Fluticasona/administração & dosagem , Fluticasona/farmacocinética , Humanos , Lactoferrina/química , Peptídeos/química , Permeabilidade/efeitos dos fármacos , Domínios Proteicos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Xinafoato de Salmeterol/administração & dosagem , Xinafoato de Salmeterol/farmacocinética
11.
AAPS PharmSciTech ; 19(7): 3272-3276, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30209791

RESUMO

The purpose of this study was to present a novel and simple drug deposition method to evaluate drug transport of aerosol microparticles across airway epithelial cells. Microparticles containing ciprofloxacin HCl (Cip) and doxycycline (Dox), alone or in a 50:50% w/w ratio, were spray dried and suspended using 2H, 3H-perfluoropentane, model propellant. The suspension was then used to assess deposition, and transport of these drug microparticles across sub-bronchial epithelial Calu-3 cells was also studied. In comparison with other methods of depositing microparticles, this proposed method, using drug suspended in HPFP, provides control over the amount of drugs applied on the surface of the cells. Therefore, cell permeability studies could be conducted with considerably smaller and more reproducible doses, without the physicochemical characteristics of the drugs being compromised or the use of modified pharmacopeia impactors. The suspension of microparticles in HPFP as presented in this study has provided a non-toxic, simple, and reproducible novel method to deliver and study the permeability of specific quantity of drugs across respiratory epithelial cells in vitro.


Assuntos
Aerossóis/metabolismo , Fluorocarbonos/metabolismo , Mucosa Respiratória/metabolismo , Aerossóis/farmacocinética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacocinética , Doxiciclina/metabolismo , Doxiciclina/farmacocinética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fluorocarbonos/farmacocinética , Humanos , Permeabilidade/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos
12.
Eur Respir J ; 52(2)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29946002

RESUMO

Chronic mucus hypersecretion (CMH) contributes to the morbidity and mortality of asthma, and remains uncontrolled by current therapies in the subset of patients with severe, steroid-resistant disease. Altered cross-talk between airway epithelium and airway smooth muscle cells (ASMCs), driven by pro-inflammatory cytokines such as interleukin (IL)-1ß, provides a potential mechanism that influences CMH. This study investigated mechanisms underlying CMH by comparing IL-1ß-induced gene expression profiles between asthma and control-derived ASMCs and the subsequent paracrine influence on airway epithelial mucus production in vitroIL-1ß-treated ASMCs from asthmatic patients and healthy donors were profiled using microarray analysis and ELISA. Air-liquid interface (ALI)-cultured CALU-3 and primary airway epithelial cells were treated with identified candidates and mucus production assessed.The IL-1ß-induced CCL20 expression and protein release was increased in ASMCs from moderate compared with mild asthmatic patients and healthy controls. IL-1ß induced lower MIR146A expression in asthma-derived ASMCs compared with controls. Decreased MIR146A expression was validated in vivo in bronchial biopsies from 16 asthmatic patients versus 39 healthy donors. miR-146a-5p overexpression abrogated CCL20 release in ASMCs. CCL20 treatment of ALI-cultured CALU-3 and primary airway epithelial cells induced mucus production, while CCL20 levels in sputum were associated with increased levels of CMH in asthmatic patients.Elevated CCL20 production by ASMCs, possibly resulting from dysregulated expression of the anti-inflammatory miR-146a-5p, may contribute to enhanced mucus production in asthma.


Assuntos
Asma/metabolismo , Quimiocina CCL20/metabolismo , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Adolescente , Adulto , Idoso , Asma/tratamento farmacológico , Estudos de Casos e Controles , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Muco/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Escarro/metabolismo , Adulto Jovem
13.
F1000Res ; 6: 409, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815017

RESUMO

In the past decade, an emerging process named "autophagy" has generated intense interest in many chronic lung diseases. Tissue remodeling and fibrosis is a common feature of many airway diseases, and current therapies do not prevent or reverse these structural changes. Autophagy has evolved as a conserved process for bulk degradation and recycling of cytoplasmic components to maintain basal cellular homeostasis and healthy organelle populations in the cell. Furthermore, autophagy serves as a cell survival mechanism and can also be induced by chemical and physical stress to the cell. Accumulating evidence demonstrates that autophagy plays an essential role in vital cellular processes, including tissue remodeling. This review will discuss some of the recent advancements made in understanding the role of this fundamental process in airway fibrosis with emphasis on airway remodeling, and how autophagy can be exploited as a target for airway remodeling in asthma and chronic obstructive pulmonary disease.

14.
Expert Opin Drug Deliv ; 13(2): 183-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26609733

RESUMO

OBJECTIVE: To develop and characterize a highly respirable dry powder inhalable formulation of voriconazole (VRZ). METHODS: Powders were prepared by spray drying aqueous/alcohol solutions. Formulations were characterized in terms of particle size, morphology, thermal, moisture responses and aerosolization performance. Optimized powder was deposited onto an air-interface Calu-3 model to assess their uptake across Calu-3 lung epithelia. Optimized formulation was evaluated for stability (drug content and aerosol performance) for 3 months. Additionally, Calu-3 cell viability, lung bioavailability and tissue distribution of optimized formulation were evaluated. RESULTS: Particle size and aerosol performance of dry powder containing 80% w/w VRZ and 20% w/w leucine was appropriate for inhalation therapy. Optimized formulation showed irregular morphology, crystalline nature, low moisture sensitivity and was stable for 3 months at room temperature. Leucine did not alter the transport kinetics of VRZ, as evaluated by air-interface Calu-3 model. Formulation was non-cytotoxic to pulmonary epithelial cells. Moreover, lung bioavailability and tissue distribution studies in murine model clearly showed that VRZ dry powder inhalable formulation has potential to enhance therapeutic efficacy at the pulmonary infection site whilst minimizing systemic exposure and related toxicity. CONCLUSION: This study supports the potential of inhaled dry powder VRZ for the treatment of fungal infections.


Assuntos
Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Química Farmacêutica/métodos , Inaladores de Pó Seco , Voriconazol/administração & dosagem , Voriconazol/farmacocinética , Administração por Inalação , Aerossóis/química , Linhagem Celular , Humanos , Leucina/química , Tamanho da Partícula , Pós/química , Mucosa Respiratória
15.
Eur J Pharm Sci ; 83: 45-51, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26690046

RESUMO

PURPOSE: The first step in developing a new inhalable formulation for the treatment of respiratory diseases is to understand the mechanisms involved in the absorption of drugs after lung deposition. This information could be important for the treatment of bacterial infection in the lung, where low permeability would probably be beneficial, or a systemic infection, where high permeability would be desirable. The goal of this study was to evaluate the transport of several antibiotics (ciprofloxacin, azithromycin, moxifloxacin, rifampicin, doxycycline and tobramycin) across human bronchial airway epithelium and to study the influence of molecular weight and LogP on the apparent permeability. METHODS: The experiments were conducted using Calu-3 cells seeded in the apical compartment of 24-well Transwell® inserts. The antibiotics transport was measured in both apical to basolateral (A-B) and basolateral to apical (B-A) directions and the apparent permeability of each antibiotic was calculated. RESULTS: The A-B transport of ciprofloxacin and rifampicin was independent of the initial concentration in the donor compartment, suggesting the involvement of active transporters in their absorption. Moxifloxacin, doxycycline, azithromycin and tobramycin presented a low absorptive permeation in the A-B direction, indicating that these substances could be substrate for efflux pumps. Generally, all antibiotics studied showed low permeabilities in the B-A direction. CONCLUSIONS: These findings suggest that the inhalation route would be favorable for delivering these specific antibiotics for the treatment of respiratory infection, compared with present oral or intravenous administration.


Assuntos
Antibacterianos/farmacologia , Brônquios/metabolismo , Células Epiteliais/metabolismo , 1-Octanol/química , Antibacterianos/química , Transporte Biológico , Brônquios/citologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vias de Administração de Medicamentos , Humanos , Peso Molecular , Permeabilidade , Água/química
16.
Mol Pharm ; 12(8): 2625-32, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26147243

RESUMO

The aim of this study was to investigate the changes in transport and effectiveness of salbutamol sulfate (SAL) and budesonide (BD) following stimulation with transforming growth factor-ß (TGF-ß) in mono- and coculture models of bronchial and alveolar epithelium. Primary bronchial and alveolar epithelial cells, grown at air interface on filters, either as monocultures or in coculture with airway smooth muscle cells or alveolar macrophages, respectively, were stimulated with TGF-ß. The biological response was modulated by depositing aerosolized SAL and BD on bronchial and alveolar models, respectively. Barrier integrity, permeability to fluorescein-Na, transport of the deposited drug, and the pharmacological response to SAL (cAMP and IL-8 levels) or BD (IL-6 and -8 levels) were measured. While stimulation with TGF-ß did not have any significant effect on the transepithelial electrical resistance and permeability to fluorescein-Na in mono- and coculture models, transport of SAL and BD were affected in cultures from some of the patients (6 out of 12 for bronchial and 2 out of 4 for alveolar cells). The bronchial coculture showed a better responsiveness to SAL in terms of cAMP release than the monoculture. In contrast, the difference between alveolar mono- and cocultures to TGF-ß mediated interleukin release and its modulation by BD was less pronounced. Our data point to intrinsic differences in the transport of, and responsiveness to, SAL and BD when epithelial cell cultures originate from different patients. Moreover, if the biological responses (e.g., IL-8, cAMP) involve communication between different cell types, coculture models are more relevant to measure such effects than monocultures.


Assuntos
Albuterol/farmacologia , Brônquios/citologia , Budesonida/farmacologia , Técnicas de Cultura de Células/métodos , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/farmacologia , Alvéolos Pulmonares/citologia , Albuterol/farmacocinética , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Broncodilatadores/farmacocinética , Broncodilatadores/farmacologia , Budesonida/farmacocinética , Células Cultivadas , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/imunologia , Humanos , Mediadores da Inflamação/farmacocinética , Permeabilidade/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Fator de Crescimento Transformador beta/farmacologia
17.
Int J Pharm ; 491(1-2): 190-7, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26117190

RESUMO

The aim of the study was to prepare inhalable resveratrol by spray drying for the treatment of chronic obstructive pulmonary disease (COPD). Resveratrol, with a spherical morphology and particle diameter less than 5 µm, was successfully manufactured. Fine particle fraction (FPF) and mass median aerodynamic diameter (MMAD) of spray-dried resveratrol was 39.9 ± 1.1% and 3.7 ± 0.1 µm, respectively, when assessed with an Andersen cascade impactor (ACI) at 60 l/min. The cytotoxicity results of resveratrol on Calu-3 revealed that the cells could tolerate high concentration of resveratrol (up to 160 µM). In addition, in transport experiments using Snapwells, it was observed that more than 80% of the deposited dry powder was transported across the Calu-3 cells to the basal chamber within four hours. The expression of interleukin-8 (IL-8) from Calu-3 induced with tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß1) and lipopolysaccharide (LPS) were significantly reduced after treatment with spray-dried resveratrol. The antioxidant assay (radical scavenging activity and nitric oxide production) showed spray-dried resveratrol to possess an equivalent antioxidant property as compared to vitamin C. Results presented in this investigation suggested that resveratrol could potentially be developed as a dry powder for inhalation for the treatment of inflammatory lung diseases like COPD.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Estilbenos/administração & dosagem , Estilbenos/farmacologia , Administração por Inalação , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Dessecação , Inaladores de Pó Seco , Células Epiteliais/efeitos dos fármacos , Sequestradores de Radicais Livres/farmacologia , Humanos , Interleucina-8/biossíntese , Lipopolissacarídeos/biossíntese , Tamanho da Partícula , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Resveratrol , Estresse Fisiológico , Fator de Crescimento Transformador beta1/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
18.
Eur J Pharm Sci ; 76: 68-72, 2015 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25956075

RESUMO

BACKGROUND: Theophylline (TP) is a bronchodilator used orally to treat chronic obstructive pulmonary disease (COPD) that has been associated with multiple side effects, tempering its present use. This study aims to improve COPD treatment by creating a low-dose pressurized metered dose inhaler (pMDI) inhalable formulation of TP. METHODS: Aerosol performance was assessed using Andersen Cascade Impaction (ACI). Solubility of TP in HFA 134/ethanol mixture was measured and morphology of the particles analyzed with a scanning electron microscope (SEM). Calu-3 cell viability, epithelial cell transport and inflammatory-response assays were conducted to study the impact of the formulation on lung epithelial cells. RESULTS: The mass deposition profile of the formulation showed an emitted dose of 250.04±14.48µg per 5 actuations, achieving the designed nominal dose (50µg/dose). SEM showed that the emitted particles were hollow with spherical morphology. Approximately 98% of TP was transported across Calu-3 epithelial cells and the concentration of interleukin-8 secreted from Calu-3 cells following stimulation with tissue necrosis factor-α (TNF-α) resulted in significantly lower level of interleukin-8 released from the cells pre-treated with TP (1.92±0.77ng·ml(-1) TP treated vs. 8.83±2.05ng·ml(-1) TNF-α stimulated, respectively). CONCLUSIONS: The solution pMDI formulation of TP developed in present study was shown to be suitable for inhalation and demonstrated anti-inflammatory effects at low doses in Calu-3 cell model.


Assuntos
Anti-Inflamatórios/administração & dosagem , Broncodilatadores/administração & dosagem , Sistemas de Liberação de Medicamentos/instrumentação , Inaladores Dosimetrados , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Teofilina/administração & dosagem , Administração por Inalação , Propelentes de Aerossol/química , Aerossóis , Anti-Inflamatórios/química , Broncodilatadores/química , Linhagem Celular , Química Farmacêutica , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Desenho de Equipamento , Etanol/química , Humanos , Hidrocarbonetos Fluorados/química , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Pressão , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Solubilidade , Tecnologia Farmacêutica/métodos , Teofilina/química , Fator de Necrose Tumoral alfa/farmacologia
19.
Eur J Pharm Biopharm ; 93: 311-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25936858

RESUMO

PURPOSE: An inhalable dry powder formulation of tranexamic acid (TA) was developed and tested in a novel high-dose Orbital® multi-breath inhaler. The formulation was specifically intended for the treatment of pulmonary haemorrhage and wound healing associated with haemoptysis. METHODS: Inhalable TA particles were prepared by spray drying and the powder characterised using laser diffraction, electron microscopy, thermal analysis, moisture sorption and X-ray powder diffraction. The aerosol performance was evaluated using cascade impaction and inline laser diffraction and interaction with epithelia cells and wound healing capacity investigated using Calu-3 air interface model. RESULTS: The spray dried TA particles were crystalline and spherical with a D0.5 of 3.35 µm. The powders were stable and had limited moisture sorption (0.307%w/w at 90%RH). The Orbital device delivered ca. 38 mg powder per 'inhalation' at 60 l · min(-1) across four sequential shots with an overall fine particle fraction (⩽ 6.4 µm) of 59.3 ± 3.5% based on the emitted mass of ca. 150 mg. The TA particles were well tolerated by Calu-3 bronchial epithelia cells across a wide range of doses (from 1 nM to 10nM) and no increase in inflammatory mediators was observed after deposition of the particles (a decrease in IL-1ß, IL-8 and INFγ was observed). Time lapse microscopy of a damaged confluent epithelia indicated that wound closure was significantly greater in TA treated cells compared to control. CONCLUSION: A stable, high performance aerosol of TA has been developed in a multi-breath DPI device that can be used for the treatment of pulmonary lesions and haemoptysis.


Assuntos
Antifibrinolíticos/administração & dosagem , Hemoptise/tratamento farmacológico , Ácido Tranexâmico/administração & dosagem , Administração por Inalação , Aerossóis , Antifibrinolíticos/química , Linhagem Celular , Química Farmacêutica , Cristalografia por Raios X , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Desenho de Equipamento , Humanos , Mediadores da Inflamação/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Vídeo , Nebulizadores e Vaporizadores , Tamanho da Partícula , Difração de Pó , Pós , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Tecnologia Farmacêutica/métodos , Termogravimetria , Fatores de Tempo , Imagem com Lapso de Tempo , Ácido Tranexâmico/química , Cicatrização/efeitos dos fármacos
20.
Mol Pharm ; 12(6): 2001-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25923171

RESUMO

The present research aimed to develop and characterize a sustained release dry powder inhalable formulation of voriconazole (VRZ) for invasive pulmonary aspergillosis. The developed formulations were studied for their in vitro release profile, aerosol, and physicochemical properties as well as interactions with lung epithelia in terms of toxicity and transport/uptake. VRZ and VRZ loaded poly lactide microparticles (VLM) were prepared by aqueous/organic cosolvent and organic spray drying, respectively. Powders were characterized using laser diffraction, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), dynamic vapor sorption (DVS), and electron microscopy. Aerosol performance was evaluated using an RS01 dry powder inhaler and in vitro cascade impaction. Uptake across Calu-3 lung epithelia was studied, using aerosol deposition of the powder onto cells cultured in an air interface configuration, and compared to dissolution using a conventional dialysis membrane. Additionally, toxicity of VRZ and VLM and the potential impact of transmembrane proteins on uptake were investigated. The particle size and the aerosol performance of spray-dried VRZ and VLM were suitable for inhalation purposes. VRZ exhibited a median volume diameter of 4.52 ± 0.07 µm while VLM exhibited 2.40 ± 0.05 µm. Spray-dried VRZ was crystalline and VLM amorphous as evaluated by DSC and XRPD, and both powders exhibited low moisture sorption between 0 and 90% RH (<1.2% w/w) by DVS. The fine particle fraction (FPF) (% aerosol <5 µm) for the VRZ was 20.86 ± 1.98% while the VLM showed significantly improved performance (p < 0.01) with an FPF of 43.56 ± 0.13%. Both VRZ and VLM were not cytotoxic over a VRZ concentration range of 1.2 nM to 30 µM, and the VLM particles exhibited a sustained release over 48 h after being deposited on the Calu-3 cell line or via conventional dialysis-based dissolution measurements. Lastly, VRZ exhibited polarized transport across epithelia with basal to apical transport being slower than apical to basal. Influx and efflux transports may also play a role as transport was altered in the presence of a number of inhibitors. This study has established an inhalable and sustained release powder of VRZ for targeting invasive pulmonary aspergillosis.


Assuntos
Preparações de Ação Retardada/química , Voriconazol/química , Administração por Inalação , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inaladores de Pó Seco , Humanos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...