Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathog Glob Health ; 117(3): 273-283, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35861105

RESUMO

The availability of the genomic sequence of the malaria mosquito Anopheles gambiae has in recent years sparked the development of transgenic technologies with the potential to be used as novel vector control tools. These technologies rely on genome editing that confer traits able to affect vectorial capacity. This can be achieved by either reducing the mosquito population or by making mosquitoes refractory to the parasite infection. For any genetically modified organism that is regarded for release, molecular characterization of the transgene and flanking sites are essential for their safety assessment and post-release monitoring. Despite great advancements, Whole-Genome Sequencing data are still subject to limitations due to the presence of repetitive and unannotated DNA sequences. Faced with this challenge, we describe a number of techniques that were used to identify the genomic location of a transgene in the male bias mosquito strain Ag(PMB)1 considered for potential field application. While the initial inverse PCR identified the most likely insertion site on Chromosome 3 R 36D, reassessment of the data showed a high repetitiveness in those sequences and multiple genomic locations as potential insertion sites of the transgene. Here we used a combination of DNA sequencing analysis and in-situ hybridization to clearly identify the integration of the transgene in a poorly annotated centromeric region of Chromosome 2 R 19D. This study emphasizes the need for accuracy in sequencing data for the genome of organisms of medical importance such as Anopheles mosquitoes and other tools available that can support genomic locations of transgenes.


Assuntos
Anopheles , Malária , Animais , Masculino , Anopheles/genética , Mosquitos Vetores/genética , Transgenes , Malária/prevenção & controle , Malária/parasitologia , Fenótipo
2.
Pathog Glob Health ; 117(3): 293-307, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35996820

RESUMO

With the current expansion of vector-based research and an increasing number of facilities rearing arthropod vectors and infecting them with pathogens, common measures for containment of arthropods as well as manipulation of pathogens are becoming essential for the design and running of such research facilities to ensure safe work and reproducibility, without compromising experimental feasibility. These guidelines and comments were written by experts of the Infravec2 consortium, a Horizon 2020-funded consortium integrating the most sophisticated European infrastructures for research on arthropod vectors of human and animal diseases. They reflect current good practice across European laboratories with experience of safely handling different mosquito species and the pathogens they transmit. As such, they provide experience-based advice to assess and manage the risks to work safely with mosquitoes and the pathogens they transmit. This document can also form the basis for research with other arthropods, for example, midges, ticks or sandflies, with some modification to reflect specific requirements.


Assuntos
Artrópodes , Culicidae , Animais , Humanos , Reprodutibilidade dos Testes , Mosquitos Vetores , Vetores Artrópodes , Europa (Continente)
3.
Front Bioeng Biotechnol ; 9: 752253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957064

RESUMO

Sex-ratio distorters based on X-chromosome shredding are more efficient than sterile male releases for population suppression. X-shredding is a form of sex distortion that skews spermatogenesis of XY males towards the preferential transmission of Y-bearing gametes, resulting in a higher fraction of sons than daughters. Strains harboring X-shredders on autosomes were first developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against, their frequency in the population declines once releases are halted. However, unintended transfer of X-shredders to the Y-chromosome could produce an invasive meiotic drive element, that benefits from its biased transmission to the predominant male-biased offspring and its effective shielding from female negative selection. Indeed, linkage to the Y-chromosome of an active X-shredder instigated the development of the nuclease-based X-shredding system. Here, we analyze mechanisms whereby an autosomal X-shredder could become unintentionally Y-linked after release by evaluating the stability of an established X-shredder strain that is being considered for release, exploring its potential for remobilization in laboratory and wild-type genomes of An. gambiae and provide data regarding expression on the mosquito Y-chromosome. Our data suggest that an invasive X-shredder resulting from a post-release movement of such autosomal transgenes onto the Y-chromosome is unlikely.

4.
Pathog Glob Health ; 114(7): 370-378, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33043870

RESUMO

Genetic control strategies aimed to bias the sex of progenies towards males present a promising new paradigm to eliminate malaria-transmitting mosquitoes. A synthetic sex-ratio distortion (SD) system was successfully engineered in Anopheles gambiae by exploiting the meiotic activity of the I-PpoI endonuclease targeting ribosomal DNA (rDNA) repeats, exclusively located on the X chromosome. Males carrying the SD construct produce highly male-biased progenies without evident reduction in fertility. In this study, we investigated the fate of X and Y chromosomes in these SD males and found that ratios of mature X:Y-bearing sperm were comparable to wild-type insects, indicating absence of selection mechanisms during sperm maturation. We therefore tested the effect of meiotic cleavage of both X and Y chromosomes in a lab-generated SD strain carrying rDNA on both sex chromosomes, showing fertility comparable to wild-type and a reduced male-bias compared to SD males in which only the X is targeted. Exposure of Y-linked rDNA to I-PpoI cleavage for consecutive generations rapidly restored the male-bias to typical high frequencies, indicating a correlation between the number of cleavable targets in each sex chromosome and the sex-ratios found in the progeny. Altogether our results indicate that meiotic cleavage of rDNA repeats, located in the sex chromosomes of A. gambiae SD males, affects the competitiveness of mature sperm to fertilize the female oocyte, thereby generating sex-biased progenies. We also show that the presence of rDNA copies on the Y chromosome does not impair the effectiveness of engineered synthetic SD systems for the control of human malaria mosquitoes.


Assuntos
Anopheles , Células Germinativas , Cromossomos Sexuais , Razão de Masculinidade , Animais , Anopheles/crescimento & desenvolvimento , Feminino , Masculino , Meiose
5.
PLoS Negl Trop Dis ; 13(9): e0007579, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479450

RESUMO

BACKGROUND: Population suppression through mass-release of Aedes aegypti males carrying dominant-lethal transgenes has been demonstrated in the field. Where population dynamics show negative density-dependence, suppression can be enhanced if lethality occurs after the density-dependent (i.e. larval) stage. Existing molecular tools have limited current examples of such Genetic Pest Management (GPM) systems to achieving this through engineering 'cell-autonomous effectors' i.e. where the expressed deleterious protein is restricted to the cells in which it is expressed-usually under the control of the regulatory elements (e.g. promoter regions) used to build the system. This limits the flexibility of these technologies as regulatory regions with useful spatial, temporal or sex-specific expression patterns may only be employed if the cells they direct expression in are simultaneously sensitive to existing effectors, and also precludes the targeting of extracellular regions such as cell-surface receptors. Expanding the toolset to 'non-cell autonomous' effectors would significantly reduce these limitations. METHODOLOGY/PRINCIPAL FINDINGS: We sought to engineer female-specific, late-acting lethality through employing the Ae. aegypti VitellogeninA1 promoter to drive blood-meal-inducible, fat-body specific expression of tTAV. Initial attempts using pro-apoptotic effectors gave no evident phenotype, potentially due to the lower sensitivity of terminally-differentiated fat-body cells to programmed-death signals. Subsequently, we dissociated the temporal and spatial expression of this system by engineering a novel synthetic effector (Scorpion neurotoxin-TetO-gp67.AaHIT) designed to be secreted out of the tissue in which it was expressed (fat-body) and then affect cells elsewhere (neuro-muscular junctions). This resulted in a striking, temporary-paralysis phenotype after blood-feeding. CONCLUSIONS/SIGNIFICANCE: These results are significant in demonstrating for the first time an engineered 'action at a distance' phenotype in a non-model pest insect. The potential to dissociate temporal and spatial expression patterns of useful endogenous regulatory elements will extend to a variety of other pest insects and effectors.


Assuntos
Aedes/fisiologia , Animais Geneticamente Modificados/fisiologia , Mordeduras e Picadas/parasitologia , Aedes/genética , Animais , Animais Geneticamente Modificados/genética , Mordeduras e Picadas/sangue , Comportamento Alimentar , Feminino , Engenharia Genética , Humanos , Masculino , Controle de Mosquitos , Regiões Promotoras Genéticas , Transgenes
6.
Parasit Vectors ; 11(Suppl 2): 660, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30583738

RESUMO

Malaria is a serious global health burden, affecting more than 200 million people each year in over 90 countries, predominantly in Africa, Asia and the Americas. Since the year 2000, a concerted effort to combat malaria has reduced its incidence by more than 40%, primarily due to the use of insecticide-treated bednets, indoor residual spraying and artemisinin-based combination drug therapies. Nevertheless, the cost of control is expected to nearly triple over the next decade and the current downward trend in disease transmission is threatened by the rise of resistance to drugs and insecticides. Novel strategies that are sustainable and cost-effective are needed to help usher in an era of malaria elimination. The most effective strategies thus far have focussed on control of the mosquito vector. The sterile insect technique (SIT) is a potentially powerful strategy that aims to suppress mosquito populations through the unproductive mating of wild female mosquitoes with sterile males that are released en masse. The technique and its derivatives are currently not appropriate for malaria control because it is difficult to sterilise males without compromising their ability to mate, and because anopheline males cannot be easily separated from females, which if released, could contribute to disease transmission. Advances in genome sequencing technologies and the development of transgenic techniques provide the tools necessary to produce mosquito sexing strains, which promise to improve current malaria-control programs and pave the way for new ones. In this review, the progress made in the development of transgenic sexing strains for the control of Anopheles gambiae, a major vector of human malaria, is discussed.


Assuntos
Anopheles/genética , Infertilidade Masculina/genética , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Animais , Animais Geneticamente Modificados , Anopheles/fisiologia , Feminino , Engenharia Genética , Marcadores Genéticos/genética , Humanos , Malária/transmissão , Masculino , Mosquitos Vetores/fisiologia , Processos de Determinação Sexual
7.
PLoS One ; 10(4): e0121097, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830287

RESUMO

Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests.


Assuntos
Aedes/genética , Mariposas/genética , Aedes/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados/genética , Genoma de Inseto , Mariposas/crescimento & desenvolvimento , Óvulo/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Recombinases/genética , Recombinases/metabolismo , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...