Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 303(8): F1230-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22811485

RESUMO

Kallistatin (KS) levels are reduced in the kidney and blood vessels under oxidative stress conditions. To determine the function of endogenous KS in the renal and cardiovascular systems, KS levels were depleted by daily injection of anti-rat KS antibody into DOCA-salt hypertensive rats for 10 days. Administration of anti-KS antibody resulted in reduced KS levels in the circulation but increased levels of serum thiobarbituric acid reactive substances (an indicator of lipid peroxidation) as well as superoxide formation in the aorta. Moreover, anti-KS antibody injection resulted in increased NADH oxidase activity and superoxide production but decreased nitric oxide levels in the kidney and heart. Endogenous KS blockade aggravated renal dysfunction, damage, hypertrophy, inflammation, and fibrosis as evidenced by decreased creatinine clearance and increased serum creatinine, blood urea nitrogen and urinary protein levels, tubular dilation, protein cast formation, glomerulosclerosis, glomerular enlargement, inflammatory cell accumulation, and collagen deposition. In addition, rats receiving anti-KS antibody had enhanced cardiac injury as indicated by cardiomyocyte hypertrophy, inflammation, myofibroblast accumulation, and fibrosis. Renal and cardiac injury caused by endogenous KS depletion was accompanied by increases in the expression of the proinflammatory genes tumor necrosis factor-α and intercellular adhesion molecule-1 and the profibrotic genes collagen I and III, transforming growth factor-ß, and tissue inhibitor of metalloproteinase-1. Taken together, these results implicate an important role for endogenous KS in protection against salt-induced renal and cardiovascular injury in rats by suppressing oxidative stress, inflammation, hypertrophy, and fibrosis.


Assuntos
Hipertensão/metabolismo , Inflamação/metabolismo , Nefropatias/metabolismo , Estresse Oxidativo/fisiologia , Serpinas/metabolismo , Animais , Desoxicorticosterona/farmacologia , Hipertensão/patologia , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/fisiologia , Masculino , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Cloreto de Sódio na Dieta/farmacologia , Superóxidos/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 299(5): H1419-27, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20729399

RESUMO

Kallistatin is a regulator of vascular homeostasis capable of controlling a wide spectrum of biological actions in the cardiovascular and renal systems. We previously reported that kallistatin inhibited intracellular reactive oxygen species formation in cultured cardiac and renal cells. The present study was aimed to investigate the role and mechanisms of kallistatin in protection against oxidative stress-induced vascular injury and endothelial cell apoptosis. We found that kallistatin gene delivery significantly attenuated aortic superoxide formation and glomerular capillary loss in hypertensive DOCA-salt rats. In cultured endothelial cells, kallistatin suppressed TNF-α-induced cellular apoptosis, and the effect was blocked by the pharmacological inhibition of phosphatidylinositol 3-kinase and nitric oxide synthase (NOS) and by the knockdown of endothelial NOS (eNOS) expression. The transduction of endothelial cells with adenovirus expressing dominant-negative Akt abolished the protective effect of kallistatin on endothelial apoptosis and caspase activity. In addition, kallistatin inhibited TNF-α-induced reactive oxygen species formation and NADPH oxidase activity, and these effects were attenuated by phosphatidylinositol 3-kinase and NOS inhibition. Kallistatin also prevented the induction of Bim protein and mRNA expression by oxidative stress. Moreover, the downregulation of forkhead box O 1 (FOXO1) and Bim expression suppressed TNF-α-mediated endothelial cell death. Furthermore, the antiapoptotic actions of kallistatin were accompanied by Akt-mediated FOXO1 and eNOS phosphorylation, as well as increased NOS activity. These findings indicate a novel role of kallistatin in the protection against vascular injury and oxidative stress-induced endothelial apoptosis via the activation of Akt-dependent eNOS signaling.


Assuntos
Apoptose/efeitos dos fármacos , Endotélio Vascular/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serpinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Modelos Animais , NADP/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
Am J Physiol Renal Physiol ; 298(4): F1033-40, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089675

RESUMO

Levels of tissue kallikrein (TK) are significantly lower in the urine of patients with kidney failure, and TK expression is specifically diminished in rat kidney after recovery from ischemia-reperfusion injury. In this study, we investigated the functional consequence of blocking endogenous TK activity in a rat model of chronic kidney disease. Inhibition of endogenous TK levels for 10 days by neutralizing TK antibody injection in DOCA-salt rats caused a significant increase in blood urea nitrogen and urinary protein levels, and a decrease in creatinine clearance. Kidney sections from anti-TK antibody-treated rats displayed a marked rise in tubular dilation and protein cast accumulation as well as glomerular sclerosis and size. TK blockade also increased inflammatory cell infiltration, myofibroblast and collagen accumulation, and collagen fraction volume. Elevated renal inflammation and fibrosis by anti-TK antibody were associated with increased expression of tumor necrosis factor-alpha, intercellular adhesion molecule-1, tissue inhibitor of metalloproteinase-2 (TIMP-2), and plasminogen activator inhibitor-1 (PAI-1). Moreover, the detrimental effect of TK blockade resulted in reduced nitric oxide (NO) levels as well as increased serum lipid peroxidation, renal NADH oxidase activity, and superoxide formation. In cultured proximal tubular cells, TK inhibited angiotensin II-induced superoxide production and NADH oxidase activity via NO formation. In addition, TK markedly increased matrix metalloproteinase-2 activity with a parallel reduction of TIMP-2 and PAI-1 synthesis. These findings indicate that endogenous TK has the propensity to preserve kidney structure and function in rats with chronic renal disease by inhibiting oxidative stress and activating matrix degradation pathways.


Assuntos
Nefropatias/metabolismo , Calicreínas Teciduais/antagonistas & inibidores , Angiotensina II , Animais , Anticorpos , Linhagem Celular , Humanos , Túbulos Renais Proximais/citologia , Masculino , Metaloproteases/metabolismo , Estresse Oxidativo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Ratos Endogâmicos WF , Espécies Reativas de Oxigênio , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Calicreínas Teciduais/metabolismo , Fator de Crescimento Transformador beta/farmacologia
4.
Toxicol Sci ; 102(2): 433-43, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18227104

RESUMO

Gentamicin is an aminoglycoside antibiotic that induces severe nephrotoxicity and acute renal failure. In the current project, we investigated the protective effects of tissue kallikrein (TK) protein administration (1 mug/h via osmotic minipumps) on kidney damage, apoptosis, and inflammation both during and after a 10-day regimen of gentamicin (80 mg/kg body weight/day sc) in Sprague-Dawley rats. TK infusion during gentamicin treatment significantly attenuated drug-induced renal dysfunction, cortical damage, and apoptosis. Moreover, TK reduced inflammatory cell accumulation in conjunction with diminished superoxide production and decreased expression of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and intercellular adhesion molecule-1. The protective effects of TK were blocked by coinfusion of icatibant (1.3 mug/h), indicating a kinin B2 receptor-mediated signaling event. After cessation of gentamicin treatment, TK infusion for 2 weeks completely restored kidney histology and morphology comparable to that of saline-treated animals. Furthermore, TK reduced gentamicin-induced renal dysfunction and fibrosis as evidenced by decreased myofibroblast and collagen accumulation in the kidney. In vitro, gentamicin increased the number of apoptotic cells and caspase-3 activity, but decreased phosphorylation of the prosurvival kinase Akt, in immortalized rat proximal tubular cells; addition of TK and bradykinin prevented these effects. In conclusion, our findings indicate that kallikrein/kinin prevents and promotes recovery of gentamicin-induced renal injury by inhibiting apoptosis, inflammatory cell recruitment, and fibrotic lesions through suppression of oxidative stress and proinflammatory mediator expression in animals during and after gentamicin treatment.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antibacterianos/toxicidade , Gentamicinas/toxicidade , Nefrite Intersticial/prevenção & controle , Recuperação de Função Fisiológica/efeitos dos fármacos , Calicreínas Teciduais/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Linhagem Celular Transformada , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Antagonismo de Drogas , Injeções Subcutâneas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/patologia , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...