Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 18: 1534735419828829, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30862207

RESUMO

BACKGROUND: Radiotherapy is one of the main treatments for malignancies. Radioresistance is a major obstacle in this treatment, calling for new treatments to improve radiotherapy outcome. Herbal medicine has low toxicity and could be a source for new radio-enhancing agents. Moringa oleifera (moringa) is a well-known medicinal plant with antiproliferative and antimetastatic properties. Possible mechanisms of moringa anticancer activity may be related to the expression of PARP-1, Bcl-2, COX-2, p65, p-IκB-a, and others. PURPOSE: The aims of the present study were to investigate effect of moringa alone and combined with radiation on survival and metastatic activity of pancreatic cancer cells and on tumor growth. METHODS AND RESULTS: The combination of moringa and radiation significantly inhibited PANC-1 cell survival in a dose-dependent manner, as tested by clonogenic and XTT assays. Moreover, standard transwell cell migration/invasion assays demonstrated reduced metastatic activity of these cells. Pyruvate mitigated the inhibitory effect of combined treatment on cell survival. Flow cytometry of moringa-treated cells revealed induction of apoptosis. Western blot analysis found that the combined treatment decreased expression of the pro-apoptotic protein Bcl-2, and downregulated the key component of DNA repair pathways PARP-1 and the NF-κB-related proteins IκB-α, p65-subunit, and COX-2. Moringa significantly inhibited growth of subcutaneous tumors generated by PANC-1 cells in nude mice. Immunohistochemical analysis demonstrated moringa's antiproliferative and antiangiogenic effects. CONCLUSIONS: Moringa decreased pancreatic cancer cell survival and metastatic activity and significantly inhibited tumor growth. The combination of moringa plus radiation resulted in an additional inhibitory effect that provided the rationale for further investigation of this combination as a novel strategy to overcome pancreatic cancer cell radioresistance.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Moringa oleifera/química , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos
2.
PLoS One ; 13(7): e0198627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969452

RESUMO

Glioblastoma multiforme (GBM) is the most common and most aggressive subtype of malignant gliomas. The current standard of care for newly diagnosed GBM patients involves maximal surgical debulking, followed by radiation therapy and temozolomide chemotherapy. Despite the advances in GBM therapy, its outcome remains poor with a median survival of less than two years. This poor outcome is partly due to the ability of GBM tumors to acquire adaptive resistance to therapy and in particular to radiation. One of the mechanisms contributing to GBM tumor progression and resistance is an aberrant activation of NF-ĸB, a family of inducible transcription factors that play a pivotal role in regulation of many immune, inflammatory and carcinogenic responses. Acetyl-11-keto-ß-boswellic acid (AKBA) is a pentacyclic terpenoid extracted from the gum Ayurvedic therapeutic plant Boswellia serrata. AKBA is anti-inflammatory agent that exhibits potent cytotoxic activities against various types of tumors including GBM. One of the mechanisms underlying AKBA anti-tumor activity is its ability to modulate the NF-ĸB signaling pathway. The present study investigated in vitro and in vivo the effect of combining AKBA with ionizing radiation in the treatment of GBM and assessed AKBA anti-tumor activity and radio-enhancing potential. The effect of AKBA and/or radiation on the survival of cultured glioblastoma cancer cells was evaluated by XTT assay. The mode of interaction of treatments tested was calculated using CalcuSyn software. Inducing of apoptosis following AKBA treatment was evaluated using flow cytometry. The effect of combined treatment on the expression of PARP protein was analysed by Western blot assay. Ectopic (subcutaneous) GBM model in nude mice was used for the evaluation of the effect of combined treatment on tumor growth. Immunohistochemical analysis of formalin-fixed paraffin-embedded tumor sections was used to assess treatment-related changes in Ki-67, CD31, p53, Bcl-2 and NF-ĸB-inhibitor IĸB-α. AKBA treatment was found to inhibit the survival of all four tested cell lines in a dose dependent manner. The combined treatment resulted in a more significant inhibitory effect compared to the effect of treatment with radiation alone. A synergistic effect was detected in some of the tested cell lines. Flow cytometric analysis with Annexin V-FITC/PI double staining of AKBA treated cells indicated induction of apoptosis. AKBA apoptotic activity was also confirmed by PARP cleavage detected by Western blot analysis. The combined treatment suppressed tumor growth in vivo compared to no treatment and each treatment alone. Immunohistochemical analysis showed anti-angiogenic and anti-proliferative activity of AKBA in vivo. It also demonstrated a decrease in p53 nuclear staining and in Bcl-2 staining and an increase in IĸB-α staining following AKBA treatment both alone and in combination with radiotherapy. In this study, we demonstrated that AKBA exerts potent anti-proliferative and apoptotic activity, and significantly inhibits both the survival of glioblastoma cells in vitro and the growth of tumors generated by these cells. Combination of AKBA with radiotherapy was found to inhibit factors which involved in cell death regulation, tumor progression and radioresistence, therefore it may serve as a novel approach for GBM patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Terapia Combinada/métodos , Raios gama/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Triterpenos/farmacologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Injeções Subcutâneas , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Integr Cancer Ther ; 17(4): 1225-1234, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30043669

RESUMO

BACKGROUND: Radiotherapy is one of the primary therapies for localized prostatic carcinoma. Therefore, there is an emerging need to sensitize prostatic cancer cells to chemotherapy/radiotherapy. Modified citrus pectin (MCP) is an effective inhibitor of galectin-3 (Gal-3), which is correlated with tumor progression, proliferation, angiogenesis, and apoptosis. PURPOSE: This study was directed to evaluate the efficacy of combining ionizing radiation (IR) with MCP on PCa cells. STUDY DESIGN: Effects of treatments on PCa cells survival were evaluated using XTT assay, flow cytometry, and clonogenic survival assay. Expression of selected proteins was estimated using western blotting. Cell motility, migration, and invasion were determined. Contribution of reactive oxygen species production to treatment effects on cell viability was tested. RESULTS: Radiotherapy combined with MCP reduced viability and enhanced radiosensitivity associated with a decrease in Gal-3, cleavage of the precursor of caspase-3, increased expression of the pro-apoptotic protein Bax, and downregulation of DNA repair pathways, poly-ADP-ribose polymerase, and proliferating cell nuclear antigen. MCP significantly reduced the invasive and migratory potential of PCa cells. Combining sodium pyruvate with MCP and IR mitigated the effect on cell viability. CONCLUSION: Our findings demonstrated that MCP sensitized PCa cells to IR by downregulating anti-apoptotic Gal-3, modulating DNA repair pathways, and increasing ROS production. For the first time the correlation between MCP, radiotherapy, and Gal-3 for prostatic cancer treatment was found. In addition, MCP reduced the metastatic properties of PCa cells. These findings provide MCP as a radiosensitizing agent to enhance IR cytotoxicity, overcome radioresistance, and reduce clinical IR dose.


Assuntos
Pectinas/farmacologia , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Citometria de Fluxo/métodos , Galectina 3/metabolismo , Humanos , Masculino , Neovascularização Patológica/metabolismo , Células PC-3 , Neoplasias da Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Virology ; 475: 139-49, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462354

RESUMO

Hepatitis C virus (HCV) replicates in membrane associated, highly ordered replication complexes (RCs). These complexes include viral and host proteins necessary for viral RNA genome replication. The interaction network among viral and host proteins underlying the formation of these RCs is yet to be thoroughly characterized. Here, we investigated the association between NS4B and NS5A, two critical RC components. We characterized the interaction between these proteins using fluorescence resonance energy transfer and a mammalian two-hybrid system. Specific tryptophan residues within the C-terminal domain (CTD) of NS4B were shown to mediate this interaction. Domain I of NS5A, was sufficient to mediate its interaction with NS4B. Mutations in the NS4B CTD tryptophan residues abolished viral replication. Moreover, one of these mutations also affected NS5A hyperphosphorylation. These findings provide new insights into the importance of the NS4B-NS5A interaction and serve as a starting point for studying the complex interactions between the replicase subunits.


Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Retículo Endoplasmático/fisiologia , Transferência Ressonante de Energia de Fluorescência , Hepacivirus/genética , Hepacivirus/metabolismo , Humanos , RNA Viral , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...