Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Eur J Nutr ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413484

RESUMO

PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years. METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country. RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D.  CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.

2.
Diabetes Care ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252849

RESUMO

OBJECTIVE: With high prevalence of obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS: We studied 2,966 youth with diabetes in the prospective SEARCH for Diabetes in Youth study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting C-peptide ≥250 pmol/L (≥0.75 ng/mL) after >3 years' (median 74 months) diabetes duration. Models included clinical measures at the baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL cholesterol), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). RESULTS: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with C-peptide ≥0.75 ng/mL (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under the receiver operating characteristic curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope 0.995-0.999). Models retained high performance for predicting retained C-peptide in older youth with obesity (AUCROC 0.88-0.96) and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). CONCLUSIONS: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with T2D.

3.
Diabetes Metab Res Rev ; 40(3): e3744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888801

RESUMO

AIMS: Determining diabetes type in children has become increasingly difficult due to an overlap in typical characteristics between type 1 diabetes (T1D) and type 2 diabetes (T2D). The Diabetes Study in Children of Diverse Ethnicity and Race (DISCOVER) programme is a National Institutes of Health (NIH)-supported multicenter, prospective, observational study that enrols children and adolescents with non-secondary diabetes. The primary aim of the study was to develop improved models to differentiate between T1D and T2D in diverse youth. MATERIALS AND METHODS: The proposed models will evaluate the utility of three existing T1D genetic risk scores in combination with data on islet autoantibodies and other parameters typically available at the time of diabetes onset. Low non-fasting serum C-peptide (<0.6 nmol/L) between 3 and 10 years after diabetes diagnosis will be considered a biomarker for T1D as it reflects the loss of insulin secretion ability. Participating centres are enrolling youth (<19 years old) either with established diabetes (duration 3-10 years) for a cross-sectional evaluation or with recent onset diabetes (duration 3 weeks-15 months) for the longitudinal observation with annual visits for 3 years. Cross-sectional data will be used to develop models. Longitudinal data will be used to externally validate the best-fitting model. RESULTS: The results are expected to improve the ability to classify diabetes type in a large and growing subset of children who have an unclear form of diabetes at diagnosis. CONCLUSIONS: Accurate and timely classification of diabetes type will help establish the correct clinical management early in the course of the disease.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Criança , Adolescente , Humanos , Adulto Jovem , Adulto , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 1/complicações , Etnicidade , Estudos Transversais , Estudos Prospectivos
4.
Nat Commun ; 14(1): 7630, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993433

RESUMO

Although the genetic basis and pathogenesis of type 1 diabetes have been studied extensively, how host responses to environmental factors might contribute to autoantibody development remains largely unknown. Here, we use longitudinal blood transcriptome sequencing data to characterize host responses in children within 12 months prior to the appearance of type 1 diabetes-linked islet autoantibodies, as well as matched control children. We report that children who present with insulin-specific autoantibodies first have distinct transcriptional profiles from those who develop GADA autoantibodies first. In particular, gene dosage-driven expression of GSTM1 is associated with GADA autoantibody positivity. Moreover, compared with controls, we observe increased monocyte and decreased B cell proportions 9-12 months prior to autoantibody positivity, especially in children who developed antibodies against insulin first. Lastly, we show that control children present transcriptional signatures consistent with robust immune responses to enterovirus infection, whereas children who later developed islet autoimmunity do not. These findings highlight distinct immune-related transcriptomic differences between case and control children prior to case progression to islet autoimmunity and uncover deficient antiviral response in children who later develop islet autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Ilhotas Pancreáticas , Humanos , Criança , Autoanticorpos , Transcriptoma , Autoimunidade/genética , Insulina/metabolismo , Infecções por Enterovirus/genética , Ilhotas Pancreáticas/metabolismo
5.
medRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808789

RESUMO

Objective: With the high prevalence of pediatric obesity and overlapping features between diabetes subtypes, accurately classifying youth-onset diabetes can be challenging. We aimed to develop prediction models that, using characteristics available at diabetes diagnosis, can identify youth who will retain endogenous insulin secretion at levels consistent with type 2 diabetes (T2D). Methods: We studied 2,966 youth with diabetes in the prospective SEARCH study (diagnosis age ≤19 years) to develop prediction models to identify participants with fasting c-peptide ≥250 pmol/L (≥0.75ng/ml) after >3 years (median 74 months) of diabetes duration. Models included clinical measures at baseline visit, at a mean diabetes duration of 11 months (age, BMI, sex, waist circumference, HDL-C), with and without islet autoantibodies (GADA, IA-2A) and a Type 1 Diabetes Genetic Risk Score (T1DGRS). Results: Models using routine clinical measures with or without autoantibodies and T1DGRS were highly accurate in identifying participants with c-peptide ≥0.75 ng/ml (17% of participants; 2.3% and 53% of those with and without positive autoantibodies) (area under receiver operator curve [AUCROC] 0.95-0.98). In internal validation, optimism was very low, with excellent calibration (slope=0.995-0.999). Models retained high performance for predicting retained c-peptide in older youth with obesity (AUCROC 0.88-0.96), and in subgroups defined by self-reported race/ethnicity (AUCROC 0.88-0.97), autoantibody status (AUCROC 0.87-0.96), and clinically diagnosed diabetes types (AUCROC 0.81-0.92). Conclusion: Prediction models combining routine clinical measures at diabetes diagnosis, with or without islet autoantibodies or T1DGRS, can accurately identify youth with diabetes who maintain endogenous insulin secretion in the range associated with type 2 diabetes.

6.
Pediatr Diabetes ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37614409

RESUMO

Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.


Assuntos
Autoimunidade , Análise de Mediação , Criança , Humanos , Índice de Massa Corporal , Ingestão de Alimentos , Ingestão de Energia , Autoanticorpos
8.
Diabetes Care ; 46(10): 1839-1847, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579501

RESUMO

OBJECTIVE: To study the interaction among HLA genotype, early probiotic exposure, and timing of complementary foods in relation to risk of islet autoimmunity (IA). RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively follows 8,676 children with increased genetic risk of type 1 diabetes. We used a Cox proportional hazards regression model adjusting for potential confounders to study early feeding and the risk of IA in a sample of 7,770 children. RESULTS: Any solid food introduced early (<6 months) was associated with increased risk of IA if the child had the HLA DR3/4 genotype and no probiotic exposure during the 1st year of life. Rice introduced at 4-5.9 months compared with later in the U.S. was associated with an increased risk of IA. CONCLUSIONS: Timing of solid food introduction, including rice, may be associated with IA in children with the HLA DR3/4 genotype not exposed to probiotics. The microbiome composition under these exposure combinations requires further study.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Lactente , Autoanticorpos/genética , Autoimunidade/genética , Predisposição Genética para Doença , Genótipo , Antígeno HLA-DR3/genética , Fatores de Risco
9.
Diabetes Care ; 46(11): 1908-1915, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607456

RESUMO

OBJECTIVE: To investigate gastrointestinal infection episodes (GIEs) in relation to the appearance of islet autoantibodies in The Environmental Determinants of Diabetes in the Young (TEDDY) cohort. RESEARCH DESIGN AND METHODS: GIEs on risk of autoantibodies against either insulin (IAA) or GAD (GADA) as the first-appearing autoantibody were assessed in a 10-year follow-up of 7,867 children. Stool virome was characterized in a nested case-control study. RESULTS: GIE reports (odds ratio [OR] 2.17 [95% CI 1.39-3.39]) as well as Norwalk viruses found in stool (OR 5.69 [1.36-23.7]) at <1 year of age were associated with an increased IAA risk at 2-4 years of age. GIEs reported at age 1 to <2 years correlated with a lower risk of IAA up to 10 years of age (OR 0.48 [0.35-0.68]). GIE reports at any other age were associated with an increase in IAA risk (OR 2.04 for IAA when GIE was observed 12-23 months prior [1.41-2.96]). Impacts on GADA risk were limited to GIEs <6 months prior to autoantibody development in children <4 years of age (OR 2.16 [1.54-3.02]). CONCLUSIONS: Bidirectional associations were observed. GIEs were associated with increased IAA risk when reported before 1 year of age or 12-23 months prior to IAA. Norwalk virus was identified as one possible candidate factor. GIEs reported during the 2nd year of life were associated with a decreased IAA risk.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Criança , Humanos , Lactente , Pré-Escolar , Autoanticorpos , Estudos de Casos e Controles , Insulina , Anticorpos Anti-Insulina , Glutamato Descarboxilase
10.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37390828

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Autoimunidade , Autoanticorpos , Biomarcadores
11.
J Intern Med ; 294(2): 145-158, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37143363

RESUMO

The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Criança , Recém-Nascido , Humanos , Diabetes Mellitus Tipo 1/genética , Autoimunidade , Autoanticorpos , Insulina , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
12.
Diabetes Care ; 46(7): 1409-1416, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141102

RESUMO

OBJECTIVE: This study investigated physical activity and its association with the development of islet autoimmunity and type 1 diabetes in genetically at-risk children aged 5-15 years. RESEARCH DESIGN AND METHODS: As part of the longitudinal Environmental Determinants of Diabetes in the Young (TEDDY) study, annual assessment of activity using accelerometry was conducted from age 5 years. Time-to-event analyses using Cox proportional hazard models were used to assess the association between time spent in moderate to vigorous physical activity per day and the appearance of one or several autoantibodies and progression to type 1 diabetes in three risk groups: 1) 3,869 islet autoantibody (IA)-negative children, of whom 157 became single IA positive; 2) 302 single IA-positive children, of whom 73 became multiple IA positive; and 3) 294 multiple IA-positive children, of whom 148 developed type 1 diabetes. RESULTS: No significant association was found in risk group 1 or risk group 2. A significant association was seen in risk group 3 (hazard ratio 0.920 [95% CI 0.856, 0.988] per 10-min increase; P = 0.021), particularly when glutamate decarboxylase autoantibody was the first autoantibody (hazard ratio 0.883 [95% CI 0.783, 0.996] per 10-min increase; P = 0.043). CONCLUSIONS: More daily minutes spent in moderate to vigorous physical activity was associated with a reduced risk of progression to type 1 diabetes in children aged 5-15 years who had developed multiple IAs.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Criança , Humanos , Lactente , Pré-Escolar , Adolescente , Diabetes Mellitus Tipo 1/epidemiologia , Autoimunidade , Autoanticorpos , Exercício Físico
13.
Diabetes Care ; 46(10): 1753-1761, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862942

RESUMO

OBJECTIVE: To estimate the risk of progression to stage 3 type 1 diabetes based on varying definitions of multiple islet autoantibody positivity (mIA). RESEARCH DESIGN AND METHODS: Type 1 Diabetes Intelligence (T1DI) is a combined prospective data set of children from Finland, Germany, Sweden, and the U.S. who have an increased genetic risk for type 1 diabetes. Analysis included 16,709 infants-toddlers enrolled by age 2.5 years and comparison between groups using Kaplan-Meier survival analysis. RESULTS: Of 865 (5%) children with mIA, 537 (62%) progressed to type 1 diabetes. The 15-year cumulative incidence of diabetes varied from the most stringent definition (mIA/Persistent/2: two or more islet autoantibodies positive at the same visit with two or more antibodies persistent at next visit; 88% [95% CI 85-92%]) to the least stringent (mIA/Any: positivity for two islet autoantibodies without co-occurring positivity or persistence; 18% [5-40%]). Progression in mIA/Persistent/2 was significantly higher than all other groups (P < 0.0001). Intermediate stringency definitions showed intermediate risk and were significantly different than mIA/Any (P < 0.05); however, differences waned over the 2-year follow-up among those who did not subsequently reach higher stringency. Among mIA/Persistent/2 individuals with three autoantibodies, loss of one autoantibody by the 2-year follow-up was associated with accelerated progression. Age was significantly associated with time from seroconversion to mIA/Persistent/2 status and mIA to stage 3 type 1 diabetes. CONCLUSIONS: The 15-year risk of progression to type 1 diabetes risk varies markedly from 18 to 88% based on the stringency of mIA definition. While initial categorization identifies highest-risk individuals, short-term follow-up over 2 years may help stratify evolving risk, especially for those with less stringent definitions of mIA.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Lactente , Humanos , Pré-Escolar , Diabetes Mellitus Tipo 1/epidemiologia , Autoimunidade/genética , Estudos Prospectivos , Predisposição Genética para Doença , Autoanticorpos , Progressão da Doença
14.
Diabetes Care ; 46(5): 1014-1018, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867433

RESUMO

OBJECTIVE: To examine whether iron intake and genetically determined iron overload interact in predisposing to the development of childhood islet autoimmunity (IA) and type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: In The Environmental Determinants of Diabetes in the Young (TEDDY) study, 7,770 genetically high-risk children were followed from birth until the development of IA and progression to T1D. Exposures included energy-adjusted iron intake in the first 3 years of life and a genetic risk score (GRS) for increased circulating iron. RESULTS: We found a U-shaped association between iron intake and risk of GAD antibody as the first autoantibody. In children with GRS ≥2 iron risk alleles, high iron intake was associated with an increased risk of IA, with insulin as first autoantibody (adjusted hazard ratio 1.71 [95% CI 1.14; 2.58]) compared with moderate iron intake. CONCLUSIONS: Iron intake may alter the risk of IA in children with high-risk HLA haplogenotypes.


Assuntos
Diabetes Mellitus Tipo 1 , Sobrecarga de Ferro , Ilhotas Pancreáticas , Criança , Humanos , Lactente , Autoimunidade/genética , Ferro da Dieta , Ferro , Fatores de Risco , Autoanticorpos/genética , Sobrecarga de Ferro/genética , Predisposição Genética para Doença
15.
PLoS One ; 18(2): e0275123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730234

RESUMO

BACKGROUND: Celiac disease has an increasing incidence worldwide and is treated with lifelong adherence to a gluten-free diet. We aimed to describe gluten-free diet adherence rates in children with screening-identified celiac disease, determine adherence-related factors, and compare adherence to food records in a multinational prospective birth cohort study. METHODS: Children in The Environmental Determinants of Diabetes in the Young study with celiac disease were included. Subjects had at least annual measurement of adherence (parent-report) and completed 3-day food records. Descriptive statistics, t-tests, Kruskal-Wallis tests and multivariable logistic and linear regression were employed. RESULTS: Two hundred ninety (73%) and 199 (67%) of subjects were always adherent to a gluten-free diet at 2 and 5 years post celiac disease diagnosis respectively. The percentage of children with variable adherence increased from 1% at 2 years to 15% at 5 years. Children with a first-degree relative with celiac disease were more likely to be adherent to the gluten-free diet. Gluten intake on food records could not differentiate adherent from nonadherent subjects. Adherent children from the United States had more gluten intake based on food records than European children (P < .001 and P = .007 at 2 and 5 years respectively). CONCLUSION: Approximately three-quarters of children with screening-identified celiac disease remain strictly adherent to a gluten-free diet over time. There are no identifiable features associated with adherence aside from having a first-degree relative with celiac disease. Despite good parent-reported adherence, children from the United States have more gluten intake when assessed by food records. Studies on markers of gluten-free diet adherence, sources of gluten exposure (particularly in the United States), and effects of adherence on mucosal healing are needed.


Assuntos
Doença Celíaca , Dieta Livre de Glúten , Cooperação do Paciente , Criança , Humanos , Doença Celíaca/terapia , Glutens , Estudos Prospectivos
16.
Lancet Child Adolesc Health ; 7(4): 261-268, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681087

RESUMO

BACKGROUND: Screening for islet autoantibodies in children and adolescents identifies individuals who will later develop type 1 diabetes, allowing patient and family education to prevent diabetic ketoacidosis at onset and to enable consideration of preventive therapies. We aimed to assess whether islet autoantibody screening is effective for predicting type 1 diabetes in adolescents aged 10-18 years with an increased risk of developing type 1 diabetes. METHODS: Data were harmonised from prospective studies from Finland (the Diabetes Prediction and Prevention study), Germany (the BABYDIAB study), and the USA (Diabetes Autoimmunity Study in the Young and the Diabetes Evaluation in Washington study). Autoantibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2 were measured at each follow-up visit. Children who were lost to follow-up or diagnosed with type 1 diabetes before 10 years of age were excluded. Inverse probability censoring weighting was used to include data from remaining participants. Sensitivity and the positive predictive value of these autoantibodies, tested at one or two ages, to predict type 1 diabetes by the age of 18 years were the main outcomes. FINDINGS: Of 20 303 children with an increased type 1 diabetes risk, 8682 were included for the analysis with inverse probability censoring weighting. 1890 were followed up to 18 years of age or developed type 1 diabetes between the ages of 10 years and 18 years, and their median follow-up was 18·3 years (IQR 14·5-20·3). 442 (23·4%) of 1890 adolescents were positive for at least one islet autoantibody, and 262 (13·9%) developed type 1 diabetes. Time from seroconversion to diabetes diagnosis increased by 0·64 years (95% CI 0·34-0·95) for each 1-year increment of diagnosis age (Pearson's correlation coefficient 0·88, 95% CI 0·50-0·97, p=0·0020). The median interval between the last prediagnostic sample and diagnosis was 0·3 years (IQR 0·1-1·3) in the 227 participants who were autoantibody positive and 6·8 years (1·6-9·9) for the 35 who were autoantibody negative. Single screening at the age of 10 years was 90% (95% CI 86-95) sensitive, with a positive predictive value of 66% (60-72) for clinical diabetes. Screening at two ages (10 years and 14 years) increased sensitivity to 93% (95% CI 89-97) but lowered the positive predictive value to 55% (49-60). INTERPRETATION: Screening of adolescents at risk for type 1 diabetes only once at 10 years of age for islet autoantibodies was highly effective to detect type 1 diabetes by the age of 18 years, which in turn could enable prevention of diabetic ketoacidosis and participation in secondary prevention trials. FUNDING: JDRF International.


Assuntos
Diabetes Mellitus Tipo 1 , Cetoacidose Diabética , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Diabetes Mellitus Tipo 1/diagnóstico , Autoanticorpos , Estudos Prospectivos , Progressão da Doença
17.
Am J Gastroenterol ; 118(3): 539-545, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219178

RESUMO

INTRODUCTION: The Environmental Determinants of Diabetes in the Young study follows an HLA risk selected birth cohort for celiac disease (CD) development using a uniform protocol. Children under investigation come from 6 different regions within Europe and the United States. Our aim was to identify regional differences in CD autoimmunity and CD cumulative incidence for children born between 2004 and 2010. METHODS: Children (n = 6,628) with DQ2.5 and/or DQ8.1 were enrolled prospectively from birth in Georgia, Washington, Colorado, Finland, Germany, and Sweden. Children underwent periodic study screening for tissue transglutaminase antibodies and then CD evaluation per clinical care. Population-specific estimates were calculated by weighting the study-specific cumulative incidence with the population-specific haplogenotype frequencies obtained from large stem cell registries from each site. RESULTS: Individual haplogenotype risks for CD autoimmunity and CD varied by region and affected the cumulative incidence within that region. The CD incidence by age 10 years was highest in Swedish children at 3%. Within the United States, the incidence by age 10 years in Colorado was 2.4%. In the model adjusted for HLA, sex, and family history, Colorado children had a 2.5-fold higher risk of CD compared to Washington. Likewise, Swedish children had a 1.4-fold and 1.8-fold higher risk of CD compared with those in Finland and Germany, respectively. DISCUSSION: There is high regional variability in cumulative incidence of CD, which suggests differential environmental, genetic, and epigenetic influences even within the United States. The overall high incidence warrants a low threshold for screening and further research on region-specific CD triggers.


Assuntos
Doença Celíaca , Criança , Humanos , Incidência , Doença Celíaca/epidemiologia , Doença Celíaca/genética , Doença Celíaca/diagnóstico , Predisposição Genética para Doença , Autoanticorpos , Autoimunidade
18.
Diabetologia ; 66(1): 93-104, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195673

RESUMO

AIMS/HYPOTHESIS: The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1 diabetes in autoantibody-positive children. METHODS: Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap. RESULTS: A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity indicators resulted in even better performance: C index 0.76 (95% CI 0.74, 0.77). The predictive power was maintained when using the IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82 (95% CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95% CI 0.75, 0.76) at 11 years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up. CONCLUSIONS/INTERPRETATION: Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabetes in IAb-positive children beyond qualitative IAb positivity status.


Assuntos
Diabetes Mellitus Tipo 1 , Criança , Humanos , Estudos Prospectivos , Finlândia , Alemanha , Autoanticorpos
19.
Pediatr Diabetes ; 23(8): 1586-1593, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36082496

RESUMO

OBJECTIVE: Increased level of glycated hemoglobin (HbA1c) is associated with type 1 diabetes onset that in turn is preceded by one to several autoantibodies against the pancreatic islet beta cell autoantigens; insulin (IA), glutamic acid decarboxylase (GAD), islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8). The risk for type 1 diabetes diagnosis increases by autoantibody number. Biomarkers predicting the development of a second or a subsequent autoantibody and type 1 diabetes are needed to predict disease stages and improve secondary prevention trials. This study aimed to investigate whether HbA1c possibly predicts the progression from first to a subsequent autoantibody or type 1 diabetes in healthy children participating in the Environmental Determinants of Diabetes in the Young (TEDDY) study. RESEARCH DESIGN AND METHODS: A joint model was designed to assess the association of longitudinal HbA1c levels with the development of first (insulin or GAD autoantibodies) to a second, second to third, third to fourth autoantibody or type 1 diabetes in healthy children prospectively followed from birth until 15 years of age. RESULTS: It was found that increased levels of HbA1c were associated with a higher risk of type 1 diabetes (HR 1.82, 95% CI [1.57-2.10], p < 0.001) regardless of first appearing autoantibody, autoantibody number or type. A decrease in HbA1c levels was associated with the development of IA-2A as a second autoantibody following GADA (HR 0.85, 95% CI [0.75, 0.97], p = 0.017) and a fourth autoantibody following GADA, IAA and ZnT8A (HR 0.90, 95% CI [0.82, 0.99], p = 0.036). HbA1c trajectory analyses showed a significant increase of HbA1c over time (p < 0.001) and that the increase is more rapid as the number of autoantibodies increased from one to three (p < 0.001). CONCLUSION: In conclusion, increased HbA1c is a reliable time predictive marker for type 1 diabetes onset. The increased rate of increase of HbA1c from first to third autoantibody and the decrease in HbA1c predicting the development of IA-2A are novel findings proving the link between HbA1c and the appearance of autoantibodies.


Assuntos
Diabetes Mellitus Tipo 1 , Hemoglobinas Glicadas , Criança , Humanos , Autoanticorpos/sangue , Autoanticorpos/química , Biomarcadores , Diabetes Mellitus Tipo 1/diagnóstico , Glutamato Descarboxilase/imunologia , Hemoglobinas Glicadas/química , Insulina/metabolismo
20.
Diabetes Care ; 45(10): 2271-2281, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150053

RESUMO

OBJECTIVE: To distinguish among predictors of seroconversion, progression to multiple autoantibodies and from multiple autoantibodies to type 1 diabetes in young children. RESEARCH DESIGN AND METHODS: Genetically high-risk newborns (n = 8,502) were followed for a median of 11.2 years (interquartile range 9.3-12.6); 835 (9.8%) developed islet autoantibodies and 283 (3.3%) were diagnosed with type 1 diabetes. Predictors were examined using Cox proportional hazards models. RESULTS: Predictors of seroconversion and progression differed, depending on the type of first appearing autoantibody. Male sex, Finnish residence, having a sibling with type 1 diabetes, the HLA DR4 allele, probiotic use before age 28 days, and single nucleotide polymorphism (SNP) rs689_A (INS) predicted seroconversion to IAA-first (having islet autoantibody to insulin as the first appearing autoantibody). Increased weight at 12 months and SNPs rs12708716_G (CLEC16A) and rs2292239_T (ERBB3) predicted GADA-first (autoantibody to GAD as the first appearing). For those having a father with type 1 diabetes, the SNPs rs2476601_A (PTPN22) and rs3184504_T (SH2B3) predicted both. Younger age at seroconversion predicted progression from single to multiple autoantibodies as well as progression to diabetes, except for those presenting with GADA-first. Family history of type 1 diabetes and the HLA DR4 allele predicted progression to multiple autoantibodies but not diabetes. Sex did not predict progression to multiple autoantibodies, but males progressed more slowly than females from multiple autoantibodies to diabetes. SKAP2 and MIR3681HG SNPs are newly reported to be significantly associated with progression from multiple autoantibodies to type 1 diabetes. CONCLUSIONS: Predictors of IAA-first versus GADA-first autoimmunity differ from each other and from the predictors of progression to diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoanticorpos/genética , Autoimunidade/genética , Diabetes Mellitus Tipo 1/diagnóstico , Progressão da Doença , Feminino , Finlândia , Predisposição Genética para Doença , Genótipo , Antígeno HLA-DR4 , Humanos , Recém-Nascido , Insulina , Masculino , Proteína Tirosina Fosfatase não Receptora Tipo 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...