Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 15(1): 114, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098057

RESUMO

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Assuntos
Exoma , Padrões de Herança , Recém-Nascido , Humanos , Genes Recessivos , Mutação , Sequenciamento do Exoma , Linhagem , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
Dose Response ; 19(2): 15593258211019880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177396

RESUMO

Cadmium telluride quantum dots (CdTe-QDs) are acquiring great interest in terms of their applications in biomedical sciences. Despite earlier sporadic studies on possible oncogenic roles and anticancer properties of CdTe-QDs, there is limited information regarding the oncogenic potential of CdTe-QDs in cancer progression. Here, we investigated the oncogenic effects of CdTe-QDs on the gene expression profiles of Chang cancer cells. Chang cancer cells were treated with 2 different doses of CdTe-QDs (10 and 25 µg/ml) at different time intervals (6, 12, and 24 h). Functional annotations helped identify the gene expression profile in terms of its biological process, canonical pathways, and gene interaction networks activated. It was found that the gene expression profiles varied in a time and dose-dependent manner. Validation of transcriptional changes of several genes through quantitative PCR showed that several genes upregulated by CdTe-QD exposure were somewhat linked with oncogenesis. CdTe-QD-triggered functional pathways that appear to associate with gene expression, cell proliferation, migration, adhesion, cell-cycle progression, signal transduction, and metabolism. Overall, CdTe-QD exposure led to changes in the gene expression profiles of the Chang cancer cells, highlighting that this nanoparticle can further drive oncogenesis and cancer progression, a finding that indicates the merit of immediate in vivo investigation.

3.
Genet Med ; 17(9): 719-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25503496

RESUMO

PURPOSE: Molecular karyotyping has rapidly become the test of choice in patients with neurocognitive phenotypes, but studies of its clinical utility have largely been limited to outbred populations. In consanguineous populations, single-gene recessive causes of neurocognitive phenotypes are expected to account for a relatively high percentage of cases, thus diminishing the yield of molecular karyotyping. The aim of this study was to test the clinical yield of molecular karyotyping in the highly consanguineous population of Saudi Arabia. METHODS: We have reviewed the data of 584 patients with neurocognitive phenotypes (mainly referred from pediatric neurology clinics), all evaluated by a single clinical geneticist. RESULTS: At least 21% of tested cases had chromosomal aberrations that are likely disease-causing. These changes include both known and novel deletion syndromes. The higher yield of molecular karyotyping in this study as compared with the commonly cited 11% can be explained by our ability to efficiently identify single-gene disorders, thus enriching the samples that underwent molecular karyotyping for de novo chromosomal aberrations. We show that we were able to identify a causal mutation in 37% of cases on a clinical basis with the help of autozygome analysis, thus bypassing the need for molecular karyotyping. CONCLUSION: Our study confirms the clinical utility of molecular karyotyping even in highly consanguineous populations.


Assuntos
Transtornos Cromossômicos/genética , Consanguinidade , Transtornos Neurocognitivos/genética , Adolescente , Adulto , Criança , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/epidemiologia , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Cariotipagem/métodos , Masculino , Transtornos Neurocognitivos/diagnóstico , Transtornos Neurocognitivos/epidemiologia , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , Arábia Saudita/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...