Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 140(3): 034701, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669401

RESUMO

The static and dynamic properties of striped colloidal particles are obtained using molecular dynamics computer simulations. Striped particles with n = 2 to n = 7 stripes of alternating electric charge are modeled at a high level of detail through a pointwise (PW) representation of the particle surface. We also consider the extent to which striped particles are similar to comparable isotropically attractive particles-such as depletion attracting colloids-by modeling striped particles with an isotropic pair interaction computed by coarse-graining (CG) over orientations at a pair level. Surprisingly, the CG models reproduce the static structure of the PW models for a range of volume fractions and interaction strengths consistent with the fluid region of the phase diagram for all n. As a corollary, different n-striped particle systems with comparable pair affinities (e.g., dimer equilibrium constant) have similar static structure. Stronger pair interactions lead to a collapsed structure in simulation as consistent with a glass-like phase. Different n-striped particle systems are found to have different phase boundaries and for certain n's no glass-like state is observed in any of our simulations. The CG model is found to have accelerated dynamics relative to the PW model for the same range of fluid conditions for which the models have identical static structure. This suggests striped electrostatic particles have slower dynamics than comparable isotropically attractive colloids. The slower dynamics result from a larger number of long-duration reversible bonds between pairs of striped particles than seen in isotropically attractive systems. We also found that higher n-striped particles systems generally have slower dynamics than lower n-striped systems with comparable pair affinities.

2.
J Chem Phys ; 138(18): 184903, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23676070

RESUMO

The dynamical properties of dipolar Janus particles are studied through simulation using our previously-developed detailed pointwise (PW) model and an isotropically coarse-grained (CG) model [M. C. Hagy and R. Hernandez, J. Chem. Phys. 137, 044505 (2012)]. The CG model is found to have accelerated dynamics relative to the PW model over a range of conditions for which both models have near identical static equilibrium properties. Physically, this suggests dipolar Janus particles have slower transport properties (such as diffusion) in comparison to isotropically attractive particles. Time rescaling and damping with Langevin friction are explored to map the dynamics of the CG model to that of the PW model. Both methods map the diffusion constant successfully and improve the velocity autocorrelation function and the mean squared displacement of the CG model. Neither method improves the distribution of reversible bond durations f(tb) observed in the CG model, which is found to lack the longer duration reversible bonds observed in the PW model. We attribute these differences in f(tb) to changes in the energetics of multiple rearrangement mechanisms. This suggests a need for new methods that map the coarse-grained dynamics of such systems to the true time scale.


Assuntos
Coloides/química , Simulação de Dinâmica Molecular
3.
J Chem Phys ; 137(4): 044505, 2012 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-22852629

RESUMO

The static microstructures and thermodynamics of a colloidal dispersion of dipolar Janus (DJ) particles-that is, dipolar spheres in which each hemisphere is specified by a different charge interaction-have been investigated through simulation. DJ particles are modeled at a high level of detail with pairwise potentials represented as a sum of a spherically symmetric soft repulsion and an orientation-dependent electrostatic component using continuous potentials. The latter is important because it allows for the use of conventional molecular dynamics simulations, and is in contrast to the patch model and dipolar hard sphere model, which are discontinuous and therefore do not. The electrostatics are represented through a rigorous pointwise (PW) covering of two different hemispheres filled by points of corresponding charge. An isotropic coarse-graining (CG) of the PW models serves as a limit of the structure wherein the orientations of the DJ particles can be pairwise averaged. Over the range of volume fractions and DJ charge densities studied-consistent with reversible structures absent of long-range correlations-the CG model agrees well with the PW model with respect to equilibrium structure (isotropic pair correlation) and ensemble free energy. Time-dependent relaxation simulations of the PW model suggest that chain structures are not expected in liquid phases in contrast to that which has been observed for point dipole models of simple polar fluids.


Assuntos
Coloides/química , Simulação de Dinâmica Molecular , Termodinâmica , Estrutura Molecular
4.
Langmuir ; 24(22): 13037-47, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18834163

RESUMO

The reversible binding between a planar polymer layer functionalized by ligands and a planar cell surface containing different densities of mobile receptors has been studied by Monte Carlo simulations. Using the acceptance-ratio method, the distance-dependent profiles for the average number of ligands bound to receptors, the total free energy for the polymer layer-cell surface interaction and the interaction force were obtained. Four main design parameters for the polymer layer were considered: the degree of functionalization, chain degree of polymerization, polymer grafting density and the binding energy for the ligand-receptor interaction. We found that an increase in the degree of functionalization or in the absolute energy of ligand-receptor binding results in a larger number of ligands bound to the receptors, lower free energy, and stronger attractive force. Polymer layers composed of shorter chains were found to exhibit a deeper and narrower free energy profile and a larger attractive force, while longer tethers can interact with the cell surface at a larger and broader range of separation distances, in agreement with experimental observations. Our simulation results show that the increase in polymer grafting density from the mushroom to brush regime enhances the ligand availability and results in a stronger attractive force, increases the maximum binding distance, but exhibits a shallower free energy minimum due to the smaller tolerance to compression for polymer layers with high grafting density. We used two measures of the polymer layer binding affinity to the cell surface: the free energy minimum, related to the equilibrium binding constant and the fraction of bound ligands. We found that the polymer layers with a smaller chain length and grafting density, larger degree of functionalization, and larger absolute binding energy exhibit both a larger equilibrium binding constant to the cell surface and a larger average number of bound ligands, except for high binding energies when the maximum level of binding is reached independently of polymer length and grafting density. We showed that high binding specificity can be achieved by the polymer layers with intermediate ligand-receptor binding energies or an intermediate number of ligands, as a larger binding energy or number of ligands ensures a high binding affinity but lacks specificity while a smaller binding energy or number of ligands provides inadequate affinity. We found that the results for polymer layers with different properties follow a similar pattern when both high binding affinity to cells with high receptor density and high binding specificity are considered. As a result, the optimal design of the polymer layers can be achieved by using several different strategies, which are discussed.


Assuntos
Membrana Celular/metabolismo , Polímeros/química , Adsorção , Físico-Química/métodos , Simulação por Computador , Desenho de Equipamento , Ligantes , Membranas Artificiais , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Polietilenoglicóis/química , Ligação Proteica , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA