Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19460-19468, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38973766

RESUMO

Vibrationally-resolved resonant inelastic X-ray scattering (VR-RIXS) at the O K-edge is emerging as a powerful tool for identifying embedded molecules in lithium-ion battery cathodes. Here, we investigate two known oxygen redox-active cathode materials: the commercial LixNi0.90Co0.05Al0.05O2 (NCA) used in electric vehicles and the high-capacity cathode material Li1.2Ni0.13Co0.13Mn0.54O2 (LRNMC) for next-generation Li-ion batteries. We report the detection of a novel vibrational RIXS signature for Li-ion battery cathodes appearing in the O K pre-peak above 533 eV that we attribute to OH-groups. We discuss likely locations and pathways for OH-group formation and accumulation throughout the active cathode material. Initial-cycle behaviour for LRNMC shows that OH-signal strength correlates with the cathodes state of charge, though reversibility is incomplete. The OH-group RIXS signal strength in long-term cycled NCA is retained. Thus, VR-RIXS offers a path for gaining new insights to oxygen reactions in battery materials.

2.
ACS Appl Mater Interfaces ; 16(26): 34266-34280, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904375

RESUMO

Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNi0.5Mn1.5O4||Si/graphite full cells and compared against a carbonate-based standard LiPF6 containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite. The multi-salt electrolyte offers more inorganic-rich SEI/CEI while also forming the thinnest SEI/CEI observed in this study. Cross-talk is identified in the baseline electrolyte cell, where Si is detected on the cathode, and Mn is detected on the anode. Both the multi-salt and co-solvent electrolytes are observed to substantially reduce this cross-talk, where the co-solvent is found to be the most effective. In addition, Al corrosion is detected for the multi-salt electrolyte mainly at its end-of-life stage, where Al can be found on both the anode and cathode. Although the co-solvent electrolyte offers superior interface properties in terms of the limitation of cross-talk, the multi-salt electrolyte offers the best overall performance, suggesting that interface thickness plays a superior role compared to cross-talk. Together with their electrochemical cycling performance, the results suggest that multi-salt electrolyte provides a better long-term passivation of the electrodes for high-voltage cells.

3.
J Mater Chem A Mater ; 12(15): 9184-9199, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633215

RESUMO

A limiting factor for solid polymer electrolyte (SPE)-based Li-batteries is the functionality of the electrolyte decomposition layer that is spontaneously formed at the Li metal anode. A deeper understanding of this layer will facilitate its improvement. This study investigates three SPEs - polyethylene oxide:lithium tetrafluoroborate (PEO:LiBF4), polyethylene oxide:lithium bis(oxalate)borate (PEO:LiBOB), and polyethylene oxide:lithium difluoro(oxalato)borate (PEO:LiDFOB) - using a combination of electrochemical impedance spectroscopy (EIS), galvanostatic cycling, in situ Li deposition photoelectron spectroscopy (PES), and ab initio molecular dynamics (AIMD) simulations. Through this combination, the cell performance of PEO:LiDFOB can be connected to the initial SPE decomposition at the anode interface. It is found that PEO:LiDFOB had the highest capacity retention, which is correlated to having the least decomposition at the interface. This indicates that the lower SPE decomposition at the interface still creates a more effective decomposition layer, which is capable of preventing further electrolyte decomposition. Moreover, the PES results indicate formation of polyethylene in the SEI in cells based on PEO electrolytes. This is supported by AIMD that shows a polyethylene formation pathway through free-radical polymerization of ethylene.

4.
J Mater Chem A Mater ; 12(4): 2465-2478, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38269086

RESUMO

The rising demand for high-performance lithium-ion batteries, pivotal to electric transportation, hinges on key materials like the Ni-rich layered oxide LiNixCoyAlzO2 (NCA) used in cathodes. The present study investigates the redox mechanisms, with particular focus on the role of oxygen in commercial NCA electrodes, both fresh and aged under various conditions (aged cells have performed >900 cycles until a cathode capacity retention of ∼80%). Our findings reveal that oxygen participates in charge compensation during NCA delithiation, both through changes in transition metal (TM)-O bond hybridization and formation of partially reversible O2, the latter occurs already below 3.8 V vs. Li/Li+. Aged NCA material undergoes more significant changes in TM-O bond hybridization when cycling above 50% SoC, while reversible O2 formation is maintained. Nickel is found to be redox active throughout the entire delithiation and shows a more classical oxidation state change during cycling with smaller changes in the Ni-O hybridization. By contrast, Co redox activity relies on a stronger change in Co-O hybridization, with only smaller Co oxidation state changes. The Ni-O bond displays an almost twice as large change in its bond length on cycling as the Co-O bond. The Ni-O6 octahedra are similar in size to the Co-O6 octahedra in the delithiated state, but are larger in the lithiated state, a size difference that increases with battery ageing. These contrasting redox activities are reflected directly in structural changes. The NCA material exhibits the formation of nanopores upon ageing, and a possible connection to oxygen redox activity is discussed. The difference in interaction of Ni and Co with oxygen provides a key understanding of the mechanism and the electrochemical instability of Ni-rich layered transition metal oxide electrodes. Our research specifically highlights the significance of the role of oxygen in the electrochemical performance of electric-vehicle-grade NCA electrodes, offering important insights for the creation of next-generation long-lived lithium-ion batteries.

5.
Sci Rep ; 13(1): 9060, 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37271770

RESUMO

Elucidating the complex degradation pathways and formed decomposition products of the electrolytes in Li-metal batteries remains challenging. So far, computational studies have been dominated by studying the reactions at inert Li-metal surfaces. In contrast, this study combines DFT and AIMD calculations to explore the Li-nucleation process for studying interfacial reactions during Li-plating by introducing Li-atoms close to the metal surface. These Li-atoms were added into the PEO polymer electrolytes in three stages to simulate the spontaneous reactions. It is found that the highly reactive Li-atoms added during the simulated nucleation contribute to PEO decomposition, and the resulting SEI components in this calculation include lithium alkoxide, ethylene, and lithium ethylene complexes. Meanwhile, the analysis of atomic charge provides a reliable guideline for XPS spectrum fitting in these complicated multicomponent systems. This work gives new insights into the Li-nucleation process, and experimental XPS data supporting this computational strategy. The AIMD/DFT approach combined with surface XPS spectra can thus help efficiently screen potential polymer materials for solid-state battery polymer electrolytes.

6.
ACS Omega ; 7(45): 41696-41710, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406498

RESUMO

The pursuit of new and better battery materials has given rise to numerous studies of the possibilities to use two-dimensional negative electrode materials, such as MXenes, in lithium-ion batteries. Nevertheless, both the origin of the capacity and the reasons for significant variations in the capacity seen for different MXene electrodes still remain unclear, even for the most studied MXene: Ti3C2 T x . Herein, freestanding Ti3C2 T x MXene films, composed only of Ti3C2 T x MXene flakes, are studied as additive-free negative lithium-ion battery electrodes, employing lithium metal half-cells and a combination of chronopotentiometry, cyclic voltammetry, X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy experiments. The aim of this study is to identify the redox reactions responsible for the observed reversible and irreversible capacities of Ti3C2 T x -based lithium-ion batteries as well as the reasons for the significant capacity variation seen in the literature. The results demonstrate that the reversible capacity mainly stems from redox reactions involving the T x -Ti-C titanium species situated on the surfaces of the MXene flakes, whereas the Ti-C titanium present in the core of the flakes remains electro-inactive. While a relatively low reversible capacity is obtained for electrodes composed of pristine Ti3C2 T x MXene flakes, significantly higher capacities are seen after having exposed the flakes to water and air prior to the manufacturing of the electrodes. This is ascribed to a change in the titanium oxidation state at the surfaces of the MXene flakes, resulting in increased concentrations of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species. The significant irreversible capacity seen in the first cycles is mainly attributed to the presence of residual water in the Ti3C2 T x electrodes. As the capacities of Ti3C2 T x MXene negative electrodes depend on the concentration of Ti(II), Ti(III), and Ti(IV) in the T x -Ti-C surface species and the water content, different capacities can be expected when using different manufacturing, pretreatment, and drying procedures.

7.
ACS Appl Mater Interfaces ; 14(25): 28716-28728, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35708265

RESUMO

Proper understanding of solid polymer electrolyte-electrode interfacial layer formation and its implications on cell performance is a vital step toward realizing practical solid-state lithium-ion batteries. At the same time, probing these solid-solid interfaces is extremely challenging as they are buried within the electrochemical system, thereby efficiently evading exposure to surface-sensitive spectroscopic methods. Still, the probing of interfacial degradation layers is essential to render an accurate picture of the behavior of these materials in the vicinity of their electrochemical stability limits and to complement the incomplete picture gained from electrochemical assessments. In this work, we address this issue in conjunction with presenting a thorough evaluation of the electrochemical stability window of the solid polymer electrolyte poly(ε-caprolactone):lithium bis(trifluoromethanesulfonyl)imide (PCL:LiTFSI). According to staircase voltammetry, the electrochemical stability window of the polyester-based electrolyte was found to span from 1.5 to 4 V vs Li+/Li. Subsequent decomposition of PCL:LiTFSI outside of the stability window led to a buildup of carbonaceous, lithium oxide and salt-derived species at the electrode-electrolyte interface, identified using postmortem spectroscopic analysis. These species formed highly resistive interphase layers, acting as major bottlenecks in the SPE system. Resistance and thickness values of these layers at different potentials were then estimated based on the impedance response between a lithium iron phosphate reference electrode and carbon-coated working electrodes. Importantly, it is only through the combination of electrochemistry and photoelectron spectroscopy that the full extent of the electrochemical performance at the limits of electrochemical stability can be reliably and accurately determined.

8.
ACS Appl Mater Interfaces ; 14(5): 6465-6475, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099928

RESUMO

The important electrochemical processes in a battery happen at the solid/liquid interfaces. Operando ambient pressure photoelectron spectroscopy (APPES) is one tool to study these processes with chemical specificity. However, accessing this crucial interface and identifying the interface signal are not trivial. Therefore, we present a measurement setup, together with a suggested model, exemplifying how APPES can be used to probe potential differences over the electrode/electrolyte interface, even without direct access to the interface. Both the change in electron electrochemical potential over the solid/liquid interface, and the change in Li chemical potential of the working electrode (WE) surface at Li-ion equilibrium can be probed. Using a Li4Ti5O12 composite as a WE, our results show that the shifts in kinetic energy of the electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the WE/electrolyte interface. Different shifts in kinetic energy are seen depending on if a phase transition reaction occurs or if a single phase is lithiated. The developed methodology can be used to evaluate charge transfer over the WE/electrolyte interface as well as the lithiation/delithiation mechanism of the WE.

9.
ACS Appl Mater Interfaces ; 13(28): 32989-32996, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251812

RESUMO

The electrochemical potential difference (ΔµÌ…) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), ΔµÌ… values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how ΔµÌ… affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in ΔµÌ…e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.

10.
J Synchrotron Radiat ; 28(Pt 2): 624-636, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650575

RESUMO

HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >1012 photons s-1 (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.

11.
ACS Appl Mater Interfaces ; 13(3): 3867-3880, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33434003

RESUMO

Dual-ion batteries (DIBs) generally operate beyond 4.7 V vs Li+/Li0 and rely on the intercalation of both cations and anions in graphite electrodes. Major challenges facing the development of DIBs are linked to electrolyte decomposition at the cathode-electrolyte interface (CEI), graphite exfoliation, and corrosion of Al current collectors. In this work, X-ray photoelectron spectroscopy (XPS) is employed to gain a broad understanding of the nature and dynamics of the CEI built on anion-intercalated graphite cycled both in highly concentrated electrolytes (HCEs) of common lithium salts (LiPF6, LiFSI, and LiTFSI) in carbonate solvents and in a typical ionic liquid. Though Al metal current collectors were adequately stable in all HCEs, the Coulombic efficiency was substantially higher for HCEs based on LiFSI and LiTFSI salts. Specific capacities ranging from 80 to 100 mAh g-1 were achieved with a Coulombic efficiency above 90% over extended cycling, but cells with LiPF6-based electrolytes were characterized by <70% Coulombic efficiency and specific capacities of merely ca. 60 mAh g-1. The poor performance in LiPF6-containing electrolytes is indicative of the continual buildup of decomposition products at the interface due to oxidation, forming a thick interfacial layer rich in LixPFy, POxFy, LixPOyFz, and organic carbonates as evidenced by XPS. In contrast, insights from XPS analyses suggested that anion intercalation and deintercalation processes in the range from 3 to 5.1 V give rise to scant or extremely thin surface layers on graphite electrodes cycled in LiFSI- and LiTFSI-containing HCEs, even allowing for probing anions intercalated in the near-surface bulk. In addition, ex situ Raman, SEM and TEM characterizations revealed the presence of a thick coating on graphite particles cycled in LiPF6-based electrolytes regardless of salt concentration, while hardly any surface film was observed in the case of concentrated LiFSI and LiTFSI electrolytes.

12.
ACS Appl Energy Mater ; 3(6): 5937-5948, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32954223

RESUMO

Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of Li2VO2F, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of Li2VO2F particles with AlF3 surface modification, resulting in a much-enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g-1 after only 50 cycles, the treated materials retain almost 200 mA h g-1. Photoelectron spectroscopy depth profiling confirms the stabilization of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition.

13.
Nat Commun ; 10(1): 3080, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300638

RESUMO

Operando ambient pressure photoelectron spectroscopy in realistic battery environments is a key development towards probing the functionality of the electrode/electrolyte interface in lithium-ion batteries that is not possible with conventional photoelectron spectroscopy. Here, we present the ambient pressure photoelectron spectroscopy characterization of a model electrolyte based on 1M bis(trifluoromethane)sulfonimide lithium salt in propylene carbonate. For the first time, we show ambient pressure photoelectron spectroscopy data of propylene carbonate in the liquid phase by using solvent vapor as the stabilizing environment. This enables us to separate effects from salt and solvent, and to characterize changes in electrolyte composition as a function of probing depth. While the bulk electrolyte meets the expected composition, clear accumulation of ionic species is found at the electrolyte surface. Our results show that it is possible to measure directly complex liquids such as battery electrolytes, which is an important accomplishment towards true operando studies.

14.
J Phys Chem Lett ; 7(10): 1775-80, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27104985

RESUMO

The buried interface between the bulk electrode material and the solid electrolyte interphase (SEI) in cycled Li-ion battery anodes is suggested to incorporate an electric potential gradient. This suggestion is based on photoelectron spectroscopy (PES) results from different anode materials that all show relative binding energy shifts between the components of the SEI and the active anode. Implications of this electric potential gradient on binding energy reference points in PES as well as on charge-transfer kinetics in Li-ion batteries are discussed. Specifically, we show that the separation of surface layer and bulk material spectral contributions (depth profiling) is crucial for consistent data interpretation. We conclude that previous interpretations of lithiation as cause for changes in PES spectra may need to be revised.

15.
Rev Sci Instrum ; 86(4): 044101, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933870

RESUMO

We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO4 in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N2 environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

16.
Rev Sci Instrum ; 85(7): 075119, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25085185

RESUMO

High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al Kα X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

17.
ACS Appl Mater Interfaces ; 5(4): 1333-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23336349

RESUMO

The surface compositions of a MnO2 catalyst containing carbon cathode and a Li anode in a Li-O2 battery were investigated using synchrotron-based photoelectron spectroscopy (PES). Electrolytes comprising LiClO4 or LiBOB salts in PC or EC:DEC (1:1) solvents were used for this study. Decomposition products from LiClO4 or LiBOB were observed on the cathode surface when using PC. However, no degradation of LiClO4 was detected when using EC/DEC. We have demonstrated that both PC and EC/DEC solvents decompose during the cell cycling to form carbonate and ether containing compounds on the surface of the carbon cathode. However, EC/DEC decomposed to a lesser degree compared to PC. PES revealed that a surface layer with a thickness of at least 1-2 nm remained on the MnO2 catalyst at the end of the charged state. It was shown that the detachment of Kynar binder influences the surface composition of both the carbon cathode and the Li anode of Li-O2 cells. The PES results indicated that in the charged state the SEI on the Li anode is composed of PEO, carboxylates, carbonates, and LiClO4 salt.

18.
Phys Chem Chem Phys ; 13(8): 3534-46, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21173950

RESUMO

The frontier electronic structures of a series of organic dye molecules containing a triphenylamine moiety, a thiophene moiety and a cyanoacrylic acid moiety have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant photoelectron spectroscopy (RPES). The experimental results were compared to electronic structure calculations on the molecules, which are used to confirm and enrich the assignment of the spectra. The approach allows us to experimentally measure and interpret the basic valence energy level structure in the dye, including the highest occupied energy level and how it depends on the interaction between the different units. Based on N 1s X-ray absorption and emission spectra we also obtain insight into the structure of the excited states, the molecular orbital composition and dynamics. Together the results provide an experimentally determined energy level map useful in the design of these types of materials. Included are also results indicating femtosecond charge redistribution at the dye/TiO(2) interface.

19.
Phys Chem Chem Phys ; 12(7): 1507-17, 2010 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-20126763

RESUMO

The electronic and molecular properties of three organic dye molecules with the general structure donor-linker-anchor have been investigated using core level photoelectron spectroscopy (PES). The molecules contain a diphenylaniline donor unit, a thiophene linker unit, and cyanoacrylic acid or rhodanine-3-acetic acid anchor units. They have been investigated both in the form of a multilayer and adsorbed onto nanoporous TiO(2) and the experimental results were also compared with DFT calculations. The changes at the dye-sensitized TiO(2) surface due to the modification of either the donor unit or the anchor unit was investigated and the results showed important differences in coverage as well as in electronic and molecular surface properties. By measuring the core level binding energies, the sub-molecular properties were characterized and the result showed that the adsorption to the TiO(2) influences the energy levels of the sub-molecular units differently.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA