Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 90(19): 11581-11588, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179447

RESUMO

Glycans are fundamental biological macromolecules, yet despite their prevalence and recognized importance, a number of unique challenges hinder routine characterization. The multiplicity of OH groups in glycan monomers easily afford branched structures and alternate linkage sites, which can result in isomeric structures that differ by minute details. Herein, radical chemistry is employed in conjunction with mass spectrometry to enable rapid, accurate, and high throughput identification of a challenging series of closely related glycan isomers. The results are compared with analysis by collision-induced dissociation, higher-energy collisional dissociation, and ultraviolet photodissociation (UVPD) at 213 nm. In general, collision-based activation struggles to produce characteristic fragmentation patterns, while UVPD and radical-directed dissociation (RDD) can distinguish all isomers. In the case of RDD, structural differentiation derives from radical mobility and subsequent fragmentation. For glycans, the energetic landscape for radical migration is flat, increasing the importance of the three-dimensional structure. RDD is therefore a powerful and straightforward method for characterizing glycan isomers.


Assuntos
Polissacarídeos/análise , Espectrometria de Massas em Tandem , Raios Ultravioleta , Cromatografia Líquida de Alta Pressão , Isomerismo , Fotólise/efeitos da radiação , Polissacarídeos/química
2.
Angew Chem Int Ed Engl ; 56(37): 11248-11251, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28513924

RESUMO

The diversity of stereochemical isomers present in glycans and glycoconjugates poses a formidable challenge for comprehensive structural analysis. Typically, sophisticated mass spectrometry (MS)-based techniques are used in combination with chromatography or ion-mobility separation. However, coexisting structurally similar isomers often render an unambiguous identification impossible. Other powerful techniques such as gas-phase infrared (IR) spectroscopy have been limited to smaller glycans, since conformational flexibility and thermal activation during the measurement result in poor spectral resolution. This limitation can be overcome by using cold-ion spectroscopy. The vibrational fingerprints of cold oligosaccharide ions exhibit a wealth of well-resolved absorption features that are diagnostic for minute structural variations. The unprecedented resolution of cold-ion spectroscopy coupled with tandem MS may render this the key technology to unravel complex glycomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...