Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35994330

RESUMO

The neocortex is organized around layered microcircuits consisting of a variety of excitatory and inhibitory neuronal types which perform rate- and oscillation-based computations. Using modeling, we show that both superficial and deep layers of the primary mouse visual cortex implement two ultrasensitive and bistable switches built on mutual inhibitory connectivity motives between somatostatin, parvalbumin, and vasoactive intestinal polypeptide cells. The switches toggle pyramidal neurons between high and low firing rate states that are synchronized across layers through translaminar connectivity. Moreover, inhibited and disinhibited states are characterized by low- and high-frequency oscillations, respectively, with layer-specific differences in frequency and power which show asymmetric changes during state transitions. These findings are consistent with a number of experimental observations and embed firing rate together with oscillatory changes within a switch interpretation of the microcircuit.


Assuntos
Neocórtex , Parvalbuminas , Animais , Camundongos , Neocórtex/metabolismo , Neurônios/fisiologia , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
PLoS Comput Biol ; 17(2): e1007858, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556058

RESUMO

Axonal connections are widely regarded as faithful transmitters of neuronal signals with fixed delays. The reasoning behind this is that extracellular potentials caused by spikes travelling along axons are too small to have an effect on other axons. Here we devise a computational framework that allows us to study the effect of extracellular potentials generated by spike volleys in axonal fibre bundles on axonal transmission delays. We demonstrate that, although the extracellular potentials generated by single spikes are of the order of microvolts, the collective extracellular potential generated by spike volleys can reach several millivolts. As a consequence, the resulting depolarisation of the axonal membranes increases the velocity of spikes, and therefore reduces axonal delays between brain areas. Driving a neural mass model with such spike volleys, we further demonstrate that only ephaptic coupling can explain the reduction of stimulus latencies with increased stimulus intensities, as observed in many psychological experiments.


Assuntos
Axônios/fisiologia , Modelos Neurológicos , Substância Branca/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Espaço Extracelular/fisiologia , Humanos , Fibras Nervosas Mielinizadas/fisiologia , Transmissão Sináptica/fisiologia
3.
Neuroimage ; 226: 117470, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137478

RESUMO

During the sleep-wake cycle, the brain undergoes profound dynamical changes, which manifest subjectively as transitions between conscious experience and unconsciousness. Yet, neurophysiological signatures that can objectively distinguish different consciousness states based are scarce. Here, we show that differences in the level of brain-wide signals can reliably distinguish different stages of sleep and anesthesia from the awake state in human and monkey fMRI resting state data. Moreover, a whole-brain computational model can faithfully reproduce changes in global synchronization and other metrics such as functional connectivity, structure-function relationship, integration and segregation across vigilance states. We demonstrate that the awake brain is close to a Hopf bifurcation, which naturally coincides with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions of individual brain areas highlights the importance of connectivity hubs in the posterior brain and subcortical nuclei for maintaining the model in the awake state, as predicted by graph-theoretical analyses of structural data.


Assuntos
Encéfalo/fisiologia , Simulação por Computador , Estado de Consciência/fisiologia , Sincronização Cortical/fisiologia , Modelos Neurológicos , Animais , Mapeamento Encefálico/métodos , Haplorrinos , Humanos , Imageamento por Ressonância Magnética/métodos , Sono/fisiologia , Inconsciência/patologia
4.
Sci Rep ; 9(1): 8479, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186486

RESUMO

Recently introduced effective connectivity methods allow for the in-vivo investigation of large-scale functional interactions between brain regions. However, dynamic causal modeling, the most widely used technique to date, typically captures only a few predefined regions of interest. In this study, we present an alternative computational approach to infer effective connectivity within the entire connectome and show its performance on a developmental cohort with emerging language capacities. The novel approach provides new opportunities to quantify effective connectivity changes in the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Simulação por Computador , Desenvolvimento da Linguagem , Rede Nervosa/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Nat Rev Neurosci ; 20(2): 117-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552403

RESUMO

The brain is organized as a network of highly specialized networks of spiking neurons. To exploit such a modular architecture for computation, the brain has to be able to regulate the flow of spiking activity between these specialized networks. In this Opinion article, we review various prominent mechanisms that may underlie communication between neuronal networks. We show that communication between neuronal networks can be understood as trajectories in a two-dimensional state space, spanned by the properties of the input. Thus, we propose a common framework to understand neuronal communication mediated by seemingly different mechanisms. We also suggest that the nesting of slow (for example, alpha-band and theta-band) oscillations and fast (gamma-band) oscillations can serve as an important control mechanism that allows or prevents spiking signals to be routed between specific networks. We argue that slow oscillations can modulate the time required to establish network resonance or entrainment and, thereby, regulate communication between neuronal networks.


Assuntos
Rede Nervosa/fisiologia , Potenciais de Ação , Animais , Comunicação Celular , Humanos , Modelos Neurológicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
6.
Sci Rep ; 7(1): 4634, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680119

RESUMO

Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Sono de Ondas Lentas/fisiologia , Vigília/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Teóricos , Adulto Jovem
7.
PLoS Comput Biol ; 13(5): e1005543, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28542191

RESUMO

Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Vigília/fisiologia , Animais , Gatos , Biologia Computacional , Haplorrinos , Neurônios/fisiologia
8.
PLoS Comput Biol ; 10(8): e1003811, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25165853

RESUMO

The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Transmissão Sináptica/fisiologia , Biologia Computacional , Retroalimentação , Neurônios/fisiologia
9.
J Neurophysiol ; 104(6): 3312-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20631221

RESUMO

Many complex systems give rise to events that are clustered in space and time, thereby establishing a correlation structure that is governed by power law statistics. In the cortex, such clusters of activity, called "neuronal avalanches," were recently found in local field potentials (LFPs) of spontaneous activity in acute cortex slices, slice cultures, the developing cortex of the anesthetized rat, and premotor and motor cortex of awake monkeys. At present, it is unclear whether neuronal avalanches also exist in the spontaneous LFPs and spike activity in vivo in sensory areas of the mature brain. To address this question, we recorded spontaneous LFPs and extracellular spiking activity with multiple 4 × 4 microelectrode arrays (Michigan Probes) in area 17 of adult cats under anesthesia. A cluster of events was defined as a consecutive sequence of time bins Δt (1-32 ms), each containing at least one LFP event or spike anywhere on the array. LFP cluster sizes consistently distributed according to a power law with a slope largely above -1.5. In two thirds of the corresponding experiments, spike clusters also displayed a power law that displayed a slightly steeper slope of -1.8 and was destroyed by subsampling operations. The power law in spike clusters was accompanied with stronger temporal correlations between spiking activities of neurons that spanned longer time periods compared with spike clusters lacking power law statistics. The results suggest that spontaneous activity of the visual cortex under anesthesia has the properties of neuronal avalanches.


Assuntos
Potenciais de Ação/fisiologia , Córtex Visual/fisiologia , Anestesia Geral , Animais , Gatos , Análise por Conglomerados , Eletrodos Implantados , Microeletrodos
10.
Arch Microbiol ; 179(2): 101-7, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12560988

RESUMO

Mannitol-2-dehydrogenase (EC 1.1.1.67) of Leuconostoc pseudomesenteroides ATCC 12291 catalyzing the NADH-dependent reduction of d-fructose to d-mannitol was purified to homogeneity. Native mannitol-2-dehydrogenase has a molecular mass of 155 kDa as determined by gel filtration chromatography. In SDS-PAGE, a single band appeared corresponding to a molecular mass of 43 kDa which indicated that the enzyme was composed of four identical subunits. Enzyme activity was completely inhibited by EDTA and could be restored by zinc ions, but not by Mn(2+) or Mg(2+) which demonstrated that zinc is a cofactor. Purified mannitol-2-dehydrogenase exhibited a maximal specific activity of 400 micromol fructose reduced min(-1) x (mg protein)(-1), using NADH as electron donor. The enzyme showed a high substrate specificity for d-fructose and d-mannitol, however it accepted NADPH as a cofactor with 32% activity ( V(max)) relative to NADPH (100%). The mdh gene, encoding mannitol-2-dehydrogenase, was identified by hybridization with a degenerate gene probe complementary to the nucleotide sequence encoding the first eight N-terminal amino acids of the enzyme. The mdh gene was cloned on a 4.2-kb DNA fragment, subcloned, and expressed in Escherichia coli. Sequencing of the gene revealed an open reading frame of 1017 bp, encoding a protein of 338 amino acids with a predicted molecular mass of 36.0 kDa. Plasmid-encoded mdh was functionally expressed, with 70 U/mg of cell-free protein in E. coli. Multiple sequence alignments showed that mannitol-2-dehydrogenase was affiliated with members of the Zn(2+)-containing medium-chain alcohol/polyol dehydrogenase/reductase protein family (MDR).


Assuntos
Leuconostoc/enzimologia , Manitol Desidrogenases/química , Manitol Desidrogenases/genética , Zinco/análise , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Bacterianos , Manitol Desidrogenases/isolamento & purificação , Manitol Desidrogenases/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...