Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686032

RESUMO

Chronic kidney disease (CKD) progression is associated with persisting oxidative stress, which impairs the NO-sGC-cGMP signaling cascade through the formation of oxidized and heme-free apo-sGC that cannot be activated by NO. Runcaciguat (BAY 1101042) is a novel, potent, and selective sGC activator that binds and activates oxidized and heme-free sGC and thereby restores NO-sGC-cGMP signaling under oxidative stress. Therefore, runcaciguat might represent a very effective treatment option for CKD/DKD. The potential kidney-protective effects of runcaciguat were investigated in ZSF1 rats as a model of CKD/DKD, characterized by hypertension, hyperglycemia, obesity, and insulin resistance. ZSF1 rats were treated daily orally for up to 12 weeks with runcaciguat (1, 3, 10 mg/kg/bid) or placebo. The study endpoints were proteinuria, kidney histopathology, plasma, urinary biomarkers of kidney damage, and gene expression profiling to gain information about relevant pathways affected by runcaciguat. Furthermore, oxidative stress was compared in the ZSF1 rat kidney with kidney samples from DKD patients. Within the duration of the 12-week treatment study, kidney function was significantly decreased in obese ZSF1 rats, indicated by a 20-fold increase in proteinuria, compared to lean ZSF1 rats. Runcaciguat dose-dependently and significantly attenuated the development of proteinuria in ZSF1 rats with reduced uPCR at the end of the study by -19%, -54%, and -70% at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo treatment. Additionally, average blood glucose levels measured as HbA1C, triglycerides, and cholesterol were increased by five times, twenty times, and four times, respectively, in obese ZSF1 compared to lean rats. In obese ZSF1 rats, runcaciguat reduced HbA1c levels by -8%, -34%, and -76%, triglycerides by -42%, -55%, and -71%, and cholesterol by -16%, -17%, and -34%, at 1, 3, and 10 mg/kg/bid, respectively, compared to placebo. Concomitantly, runcaciguat also reduced kidney weights, morphological kidney damage, and urinary and plasma biomarkers of kidney damage. Beneficial effects were accompanied by changes in gene expression that indicate reduced fibrosis and inflammation and suggest improved endothelial stabilization. In summary, the sGC activator runcaciguat significantly prevented a decline in kidney function in a DKD rat model that mimics common comorbidities and conditions of oxidative stress of CKD patients. Thus, runcaciguat represents a promising treatment option for CKD patients, which is in line with recent phase 2 clinical study data, where runcaciguat showed promising efficacy in CKD patients (NCT04507061).


Assuntos
Rim , Insuficiência Renal Crônica , Animais , Ratos , GMP Cíclico , Hemoglobinas Glicadas , Heme , Obesidade , Proteinúria , Insuficiência Renal Crônica/tratamento farmacológico , Ensaios Clínicos Fase II como Assunto
2.
NPJ Microgravity ; 9(1): 68, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608048

RESUMO

A large and diverse library of glycan-directed monoclonal antibodies (mAbs) was used to determine if plant cell walls are modified by low-gravity conditions encountered during spaceflight. This method called glycome profiling (glycomics) revealed global differences in non-cellulosic cell wall epitopes in Arabidopsis thaliana root extracts recovered from RNA purification columns between seedlings grown on the International Space Station-based Vegetable Production System and paired ground (1-g) controls. Immunohistochemistry on 11-day-old seedling primary root sections showed that ten of twenty-two mAbs that exhibited spaceflight-induced increases in binding through glycomics, labeled space-grown roots more intensely than those from the ground. The ten mAbs recognized xyloglucan, xylan, and arabinogalactan epitopes. Notably, three xylem-enriched unsubstituted xylan backbone epitopes were more intensely labeled in space-grown roots than in ground-grown roots, suggesting that the spaceflight environment accelerated root secondary cell wall formation. This study highlights the feasibility of glycomics for high-throughput evaluation of cell wall glycans using only root high alkaline extracts from RNA purification columns, and subsequent validation of these results by immunohistochemistry. This approach will benefit plant space biological studies because it extends the analyses possible from the limited amounts of samples returned from spaceflight and help uncover microgravity-induced tissue-specific changes in plant cell walls.

3.
Food Funct ; 14(3): 1401-1414, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637177

RESUMO

Upon wetting, chia (Salvia hispanica L.) nutlets produce a gel-like capsule of polysaccharides called mucilage that comprises a significant part of their dietary fibre content. Seed/nutlet mucilage is often used as a texture modifying hydrocolloid and bulking dietary fibre due to its water-binding ability, though the utility of mucilage from different sources is highly structure-function dependent. The composition and structure of chia nutlet mucilage is poorly defined, and a better understanding will aid in exploiting its dietary fibre functionality, particularly if, and how, it is utilised by gut microbiota. In this study, microscopy, chromatography, mass spectrometry and glycome profiling techniques showed that chia nutlet mucilage is highly complex, layered, and contains several polymer types. The mucilage comprises a novel xyloamylose containing both ß-linked-xylose and α-linked-glucose, a near-linear xylan that may be sparsely substituted, a modified cellulose domain, and abundant alcohol-soluble oligosaccharides. To assess the dietary fibre functionality of chia nutlet mucilage, an in vitro cumulative gas production technique was used to determine the fermentability of different chia nutlet preparations. The complex nature of chia nutlet mucilage led to poor fermentation where the oligosaccharides appeared to be the only fermentable substrate present in the mucilage. Of note, ground chia nutlets were better fermented than intact whole nutlets, as judged by short chain fatty acid production. Therefore, it is suggested that the benefits of eating chia as a "superfood", could be notably enhanced if the nutlets are ground rather than being consumed whole, improving the bioaccessibility of key nutrients including dietary fibre.


Assuntos
Mucilagem Vegetal , Salvia , Salvia hispanica , Fermentação , Salvia/química , Polissacarídeos/química , Sementes/química , Oligossacarídeos/análise , Fibras na Dieta/análise , Mucilagem Vegetal/química
4.
Plant Physiol ; 191(1): 575-590, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053186

RESUMO

Postharvest fungal pathogens benefit from the increased host susceptibility that occurs during fruit ripening. In unripe fruit, pathogens often remain quiescent and unable to cause disease until ripening begins, emerging at this point into destructive necrotrophic lifestyles that quickly result in fruit decay. Here, we demonstrate that one such pathogen, Botrytis cinerea, actively induces ripening processes to facilitate infections and promote disease in tomato (Solanum lycopersicum). Assessments of ripening progression revealed that B. cinerea accelerated external coloration, ethylene production, and softening in unripe fruit, while mRNA sequencing of inoculated unripe fruit confirmed the corresponding upregulation of host genes involved in ripening processes, such as ethylene biosynthesis and cell wall degradation. Furthermore, an enzyme-linked immunosorbent assay (ELISA)-based glycomics technique used to assess fruit cell wall polysaccharides revealed remarkable similarities in the cell wall polysaccharide changes caused by both infections of unripe fruit and ripening of healthy fruit, particularly in the increased accessibility of pectic polysaccharides. Virulence and additional ripening assessment experiments with B. cinerea knockout mutants showed that induction of ripening depends on the ability to infect the host and break down pectin. The B. cinerea double knockout Δbc polygalacturonase1 Δbc polygalacturonase2 lacking two critical pectin degrading enzymes was incapable of emerging from quiescence even long after the fruit had ripened at its own pace, suggesting that the failure to accelerate ripening severely inhibits fungal survival on unripe fruit. These findings demonstrate that active induction of ripening in unripe tomato fruit is an important infection strategy for B. cinerea.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Polissacarídeos/metabolismo , Etilenos/metabolismo , Botrytis/fisiologia , Pectinas/metabolismo , Parede Celular/metabolismo
5.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195757

RESUMO

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Assuntos
Mutação com Ganho de Função , Síndromes da Apneia do Sono , Criança , Deficiências do Desenvolvimento , Humanos , Mutação/genética , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Síndromes da Apneia do Sono/genética
6.
Respir Res ; 23(1): 272, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183104

RESUMO

BACKGROUND: Oxidative stress associated with severe cardiopulmonary diseases leads to impairment in the nitric oxide/soluble guanylate cyclase signaling pathway, shifting native soluble guanylate cyclase toward heme-free apo-soluble guanylate cyclase. Here we describe a new inhaled soluble guanylate cyclase activator to target apo-soluble guanylate cyclase and outline its therapeutic potential. METHODS: We aimed to generate a novel soluble guanylate cyclase activator, specifically designed for local inhaled application in the lung. We report the discovery and in vitro and in vivo characterization of the soluble guanylate cyclase activator mosliciguat (BAY 1237592). RESULTS: Mosliciguat specifically activates apo-soluble guanylate cyclase leading to improved cardiopulmonary circulation. Lung-selective effects, e.g., reduced pulmonary artery pressure without reduced systemic artery pressure, were seen after inhaled but not after intravenous administration in a thromboxane-induced pulmonary hypertension minipig model. These effects were observed over a broad dose range with a long duration of action and were further enhanced under experimental oxidative stress conditions. In a unilateral broncho-occlusion minipig model, inhaled mosliciguat decreased pulmonary arterial pressure without ventilation/perfusion mismatch. With respect to airway resistance, mosliciguat showed additional beneficial bronchodilatory effects in an acetylcholine-induced rat model. CONCLUSION: Inhaled mosliciguat may overcome treatment limitations in patients with pulmonary hypertension by improving pulmonary circulation and airway resistance without systemic exposure or ventilation/perfusion mismatch. Mosliciguat has the potential to become a new therapeutic paradigm, exhibiting a unique mode of action and route of application, and is currently under clinical development in phase Ib for pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Acetilcolina , Animais , Guanilato Ciclase/metabolismo , Guanilato Ciclase/uso terapêutico , Óxido Nítrico/metabolismo , Ratos , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/uso terapêutico , Suínos , Porco Miniatura/metabolismo , Tromboxanos/uso terapêutico , Vasodilatadores
7.
Comput Struct Biotechnol J ; 20: 148-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976318

RESUMO

There is a knowledge gap regarding the factors that impede the ruminal digestion of plant cell walls or if rumen microbiota possess the functional activities to overcome these constraints. Innovative experimental methods were adopted to provide a high-resolution understanding of plant cell wall chemistries, identify higher-order structures that resist microbial digestion, and determine how they interact with the functional activities of the rumen microbiota. We characterized the total tract indigestible residue (TTIR) from cattle fed a low-quality straw diet using two comparative glycomic approaches: ELISA-based glycome profiling and total cell wall glycosidic linkage analysis. We successfully detected numerous and diverse cell wall glycan epitopes in barley straw (BS) and TTIR and determined their relative abundance pre- and post-total tract digestion. Of these, xyloglucans and heteroxylans were of higher abundance in TTIR. To determine if the rumen microbiota can further saccharify the residual plant polysaccharides within TTIR, rumen microbiota from cattle fed a diet containing BS were incubated with BS and TTIR ex vivo in batch cultures. Transcripts coding for carbohydrate-active enzymes (CAZymes) were identified and characterized for their contribution to cell wall digestion based on glycomic analyses, comparative gene expression profiles, and associated CAZyme families. High-resolution phylogenetic fingerprinting of these sequences encoded CAZymes with activities predicted to cleave the primary linkages within heteroxylan and arabinan. This experimental platform provides unprecedented precision in the understanding of forage structure and digestibility, which can be extended to other feed-host systems and inform next-generation solutions to improve the performance of ruminants fed low-quality forages.

8.
Br J Pharmacol ; 179(11): 2476-2489, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34096053

RESUMO

BACKGROUND AND PURPOSE: Generation of cGMP via NO-sensitive soluble guanylyl cyclase (sGC) has been implicated in the regulation of renal functions. Chronic kidney disease (CKD) is associated with decreased NO bioavailability, increased oxidative stress and oxidation of sGC to its haem-free form, apo-sGC. Apo-sGC cannot be activated by NO, resulting in impaired cGMP signalling that is associated with chronic kidney disease progression. We hypothesised that sGC activators, which activate apo-sGC independently of NO, increase renal cGMP production under conditions of oxidative stress, thereby improving renal blood flow (RBF) and kidney function. EXPERIMENTAL APPROACH: Two novel sGC activators, runcaciguat and BAY-543, were tested on murine kidney. We measured cGMP levels in real time in kidney slices of cGMP sensor mice, vasodilation of pre-constricted glomerular arterioles and RBF in isolated perfused kidneys. Experiments were performed at baseline conditions, under L-NAME-induced NO deficiency, and in the presence of oxidative stress induced by ODQ. KEY RESULTS: Mouse glomeruli showed NO-induced cGMP increases. Under baseline conditions, sGC activator did not alter glomerular cGMP concentration or NO-induced cGMP generation. In the presence of ODQ, NO-induced glomerular cGMP signals were markedly reduced, whereas sGC activator induced strong cGMP increases. L-NAME and ODQ pretreated isolated glomerular arterioles were strongly dilated by sGC activator. sGC activator also increased cGMP and RBF in ODQ-perfused kidneys. CONCLUSION AND IMPLICATION: sGC activators increase glomerular cGMP, dilate glomerular arterioles and improve RBF under disease-relevant oxidative stress conditions. Therefore, sGC activators represent a promising class of drugs for chronic kidney disease treatment. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Insuficiência Renal Crônica , Vasodilatação , Animais , GMP Cíclico , Feminino , Guanilato Ciclase , Humanos , Rim , Masculino , Camundongos , NG-Nitroarginina Metil Éster , Óxido Nítrico , Insuficiência Renal Crônica/tratamento farmacológico , Guanilil Ciclase Solúvel
9.
Br J Pharmacol ; 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600441

RESUMO

The discovery of soluble GC (sGC) stimulators and sGC activators provided valuable tools to elucidate NO-sGC signalling and opened novel pharmacological opportunities for cardiovascular indications and beyond. The first-in-class sGC stimulator riociguat was approved for pulmonary hypertension in 2013 and vericiguat very recently for heart failure. sGC stimulators enhance sGC activity independent of NO and also act synergistically with endogenous NO. The sGC activators specifically bind to, and activate, the oxidised haem-free form of sGC. Substantial research efforts improved on the first-generation sGC activators such as cinaciguat, culminating in the discovery of runcaciguat, currently in clinical Phase II trials for chronic kidney disease and diabetic retinopathy. Here, we highlight the discovery and development of sGC stimulators and sGC activators, their unique modes of action, their preclinical characteristics and the clinical studies. In the future, we expect to see more sGC agonists in new indications, reflecting their unique therapeutic potential.

10.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2363-2379, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550407

RESUMO

Chronic kidney diseaQueryse (CKD) is associated with oxidative stress which can interrupt the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling and decrease cyclic guanosine monophosphate (cGMP) production. Low cGMP concentrations can cause kidney damage and progression of CKD. The novel sGC activator runcaciguat targets the oxidized and heme-free form of sGC, restoring cGMP production under oxidative stress. The purpose of this study is to investigate if runcaciguat could provide an effective treatment for CKD. Runcaciguat was used for the treatment not only in rat CKD models with different etiologies and comorbidities, namely of hypertensive rats, the renin transgenic (RenTG) rat, and angiotensin-supplemented (ANG-SD) rat, but also in rats with diabetic and metabolic CKD, the Zucker diabetic fatty (ZDF) rat. The treatment duration was 2 to 42 weeks and runcaciguat was applied orally in doses from 1 to 10 mg/kg/bid. In these different rat CKD models, runcaciguat significantly reduced proteinuria (urinary protein to creatinine ratio; uPCR). These effects were also significant at doses which did not or only moderately decrease systemic blood pressure. Moreover, runcaciguat significantly decreased kidney injury biomarkers and attenuated morphological kidney damages. In RenTG rats, runcaciguat improved survival rates and markers of heart injury. These data demonstrate that the sGC activator runcaciguat exhibits cardio-renal protection at doses which did not reduce blood pressure and was effective in hypertensive as well as diabetic and metabolic CKD models. These data, therefore, suggest that runcaciguat, with its specific mode of action, represents an efficient treatment approach for CKD and associated CV diseases.


Assuntos
Ciclopropanos , Diabetes Mellitus Experimental , Hipertensão , Insuficiência Renal Crônica , Animais , Masculino , Ratos , Pressão Sanguínea/efeitos dos fármacos , GMP Cíclico/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativadores de Enzimas/administração & dosagem , Ativadores de Enzimas/farmacologia , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Zucker , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/prevenção & controle , Guanilil Ciclase Solúvel/efeitos dos fármacos , Guanilil Ciclase Solúvel/metabolismo , Fatores de Tempo , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico
11.
Plant Cell Physiol ; 62(12): 1944-1962, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34392368

RESUMO

The valuable cannabinoid and terpenoid metabolites of Cannabis sativa L. are produced by floral glandular trichomes. The trichomes consist of secretory disk cells, which produce the abundant lipidic metabolites, and an extracellular storage cavity. The mechanisms of apoplastic cavity formation to accumulate and store metabolites in cannabis glandular trichomes remain wholly unexplored. Here, we identify key wall components and how they change during cannabis trichome development. While glycome and monosaccharide analyses revealed that glandular trichomes have loosely bound xyloglucans and pectic polysaccharides, quantitative immunolabeling with wall-directed antibodies revealed precise spatiotemporal distributions of cell wall epitopes. An epidermal-like identity of early trichome walls matured into specialized wall domains over development. Cavity biogenesis was marked by separation of the subcuticular wall from the underlying surface wall in a homogalacturonan and α-1,5 arabinan epitope-rich zone and was associated with a reduction in fucosylated xyloglucan epitopes. As the cavity filled, a matrix with arabinogalactan and α-1,5 arabinan epitopes enclosed the metabolite droplets. At maturity, the disk cells' apical wall facing the storage cavity accumulated rhamnogalacturonan-I epitopes near the plasma membrane. Together, these data indicate that cannabis glandular trichomes undergo spatiotemporal remodeling at specific wall subdomains to facilitate storage cavity formation and metabolite storage.


Assuntos
Cannabis/metabolismo , Parede Celular/metabolismo , Tricomas/metabolismo
12.
J Med Chem ; 64(9): 5323-5344, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33872507

RESUMO

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.


Assuntos
Desenho de Fármacos , Ativadores de Enzimas/química , Guanilil Ciclase Solúvel/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Cães , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Ativadores de Enzimas/uso terapêutico , Meia-Vida , Frequência Cardíaca/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/patologia , Simulação de Dinâmica Molecular , Ratos , Ratos Endogâmicos SHR , Solubilidade , Guanilil Ciclase Solúvel/metabolismo , Relação Estrutura-Atividade
13.
Front Plant Sci ; 12: 589518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633757

RESUMO

The bulk of plant biomass is comprised of plant cell walls, which are complex polymeric networks, composed of diverse polysaccharides, proteins, polyphenolics, and hydroxyproline-rich glycoproteins (HRGPs). Glycosyltransferases (GTs) work together to synthesize the saccharide components of the plant cell wall. The Arabidopsis thaliana fucosyltransferases (FUTs), AtFUT4, and AtFUT6, are members of the plant-specific GT family 37 (GT37). AtFUT4 and AtFUT6 transfer fucose (Fuc) onto arabinose (Ara) residues of arabinogalactan (AG) proteins (AGPs) and have been postulated to be non-redundant AGP-specific FUTs. AtFUT4 and AtFUT6 were recombinantly expressed in mammalian HEK293 cells and purified for biochemical analysis. We report an updated understanding on the specificities of AtFUT4 and AtFUT6 that are involved in the synthesis of wall localized AGPs. Our findings suggest that they are selective enzymes that can utilize various arabinogalactan (AG)-like and non-AG-like oligosaccharide acceptors, and only require a free, terminal arabinofuranose. We also report with GUS promoter-reporter gene studies that AtFUT4 and AtFUT6 gene expression is sub-localized in different parts of developing A. thaliana roots.

14.
Expert Opin Ther Pat ; 31(3): 203-222, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33395323

RESUMO

Introduction: In 2013, riociguat a potent and specific stimulator of the soluble guanylyl cyclase (sGC) was approved as first in class sGC stimulator which reflected a first culmination of intense research and development efforts starting in the mid 1990ies. In the meantime, it turned out that triggering cGMP production by sGC stimulators could have a broad treatment potential. In consequence, various pharmaceutical companies are still very active in identifying novel chemistry for sGC stimulators. After the first generation of sGC stimulators like riociguat or lificiguat, new compound classes with different physicochemical and kinetic profiles were identified, like the sGC stimulators vericiguat or praliciguat.Area covered: Patent literature on sGC stimulators with a focus on recent compounds of the years 2014-2019 as on claimed use and formulations of these compounds. The information was collected from publicly available data sources only (MedLine, EmBase, Chemical Abstracts, Orbit, Dolphin).Expert Opinion: With the recent advancements reported in the patent literature, sGC stimulators might be differentiated due to tissue selectivity or route of application although exhibiting the same molecular mode of action. The indication space of these compounds is potentially very broad and multiple indications in cardiovascular diseases and beyond are under investigation.


Assuntos
Ativadores de Enzimas/farmacologia , Agonistas da Guanilil Ciclase C/farmacologia , Guanilil Ciclase Solúvel/efeitos dos fármacos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Desenvolvimento de Medicamentos , Ativadores de Enzimas/química , Agonistas da Guanilil Ciclase C/química , Humanos , Patentes como Assunto , Guanilil Ciclase Solúvel/metabolismo
15.
Microorganisms ; 8(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260318

RESUMO

Canola meal (CM), the protein-rich by-product of canola oil extraction, has shown promise as an alternative feedstuff and protein supplement in poultry diets, yet its use has been limited due to the abundance of plant cell wall fibre, specifically non-starch polysaccharides (NSP) and lignin. The addition of exogenous enzymes to promote the digestion of CM NSP in chickens has potential to increase the metabolizable energy of CM. We isolated chicken cecal bacteria from a continuous-flow mini-bioreactor system and selected for those with the ability to metabolize CM NSP. Of 100 isolates identified, Bacteroides spp. and Enterococcus spp. were the most common species with these capabilities. To identify enzymes specifically for the digestion of CM NSP, we used a combination of glycomics techniques, including enzyme-linked immunosorbent assay characterization of the plant cell wall fractions, glycosidic linkage analysis (methylation-GC-MS analysis) of CM NSP and their fractions, bacterial growth profiles using minimal media supplemented with CM NSP, and the sequencing and de novo annotation of bacterial genomes of high-efficiency CM NSP utilizing bacteria. The SACCHARIS pipeline was used to select plant cell wall active enzymes for recombinant production and characterization. This approach represents a multidisciplinary innovation platform to bioprospect endogenous CAZymes from the intestinal microbiota of herbivorous and omnivorous animals which is adaptable to a variety of applications and dietary polysaccharides.

16.
Methods Mol Biol ; 2177: 153-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32632812

RESUMO

The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.


Assuntos
Arabidopsis/metabolismo , Glicômica/métodos , Rede trans-Golgi/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Transporte Biológico , Ensaio de Imunoadsorção Enzimática , Polissacarídeos/metabolismo
17.
Nature ; 582(7812): 443-447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499642

RESUMO

TWIK-related acid-sensitive potassium (TASK) channels-members of the two pore domain potassium (K2P) channel family-are found in neurons1, cardiomyocytes2-4 and vascular smooth muscle cells5, where they are involved in the regulation of heart rate6, pulmonary artery tone5,7, sleep/wake cycles8 and responses to volatile anaesthetics8-11. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli12-15. Unlike other K2P channels, TASK channels are able to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. As such, these channels are attractive drug targets, and TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnoea and atrial fibrillation16. In general, potassium channels have an intramembrane vestibule with a selectivity filter situated above and a gate with four parallel helices located below; however, the K2P channels studied so far all lack a lower gate. Here we present the X-ray crystal structure of TASK-1, and show that it contains a lower gate-which we designate as an 'X-gate'-created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance. This structure is formed by six residues (243VLRFMT248) that are essential for responses to volatile anaesthetics10, neurotransmitters13 and G-protein-coupled receptors13. Mutations within the X-gate and the surrounding regions markedly affect both the channel-open probability and the activation of the channel by anaesthetics. Structures of TASK-1 bound to two high-affinity inhibitors show that both compounds bind below the selectivity filter and are trapped in the vestibule by the X-gate, which explains their exceptionally low washout rates. The presence of the X-gate in TASK channels explains many aspects of their physiological and pharmacological behaviour, which will be beneficial for the future development and optimization of TASK modulators for the treatment of heart, lung and sleep disorders.


Assuntos
Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/química , Anestésicos/farmacologia , Animais , Cristalografia por Raios X , Condutividade Elétrica , Feminino , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Modelos Moleculares , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Xenopus laevis
18.
Angew Chem Int Ed Engl ; 59(30): 12493-12498, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32396713

RESUMO

Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized "on chip" by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.


Assuntos
Glicosiltransferases/química , Plantas/enzimologia , Polissacarídeos/análise , Parede Celular/química
19.
Eur J Pharmacol ; 881: 173203, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32446711

RESUMO

Soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO), is a heterodimer consisting of two subunits, the α and the ß subunit. The NO/sGC/cGMP signaling pathway is protective in different disease pathomechanisms including angina pectoris, pulmonary hypertension and fibrotic diseases. The natural ligand heme has two carboxylic acids which interact in the ß1 heme nitric oxide oxygen binding (HNOX) domain with the amino acids of the highly conserved Y-x-S-x-R motif. The Y-x-S-x-R motif is also involved in binding of the dicarboxylic activators cinaciguat and BAY 60-2770 as indicated by crystallization studies of sGC activator and bacterial HNOX homologs. To what extent the Y-x-S-x-R motif hydrogen bond network contributes to binding of monocarboxylic acids has not been examined so far. In the current paper, the chemical structural formula of the novel monocarboxylic drug BAY-543 is described for the first time. Using this novel drug, we evaluate the importance of the amino acids Y135 and R139 for thermostabilization and activation in comparison to the dicarboxylic acid BAY 60-2770. Measurements with point mutated sGC variants demonstrate tyrosine 135 as exclusive binding site of the monocarboxylic acid BAY-543 but not the dicarboxylic BAY 60-2770.


Assuntos
Ativadores de Enzimas/farmacologia , Guanilil Ciclase Solúvel/metabolismo , Motivos de Aminoácidos , Animais , Benzoatos/metabolismo , Benzoatos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacologia , Ativação Enzimática , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Células HEK293 , Humanos , Hidrocarbonetos Fluorados/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Mutação Puntual , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Células Sf9 , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/genética , Relação Estrutura-Atividade , Tirosina
20.
Plant Physiol ; 183(1): 123-136, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139476

RESUMO

The lignin biosynthetic pathway is highly conserved in angiosperms, yet pathway manipulations give rise to a variety of taxon-specific outcomes. Knockout of lignin-associated 4-coumarate:CoA ligases (4CLs) in herbaceous species mainly reduces guaiacyl (G) lignin and enhances cell wall saccharification. Here we show that CRISPR-knockout of 4CL1 in poplar (Populus tremula × alba) preferentially reduced syringyl (S) lignin, with negligible effects on biomass recalcitrance. Concordant with reduced S-lignin was downregulation of ferulate 5-hydroxylases (F5Hs). Lignification was largely sustained by 4CL5, a low-affinity paralog of 4CL1 typically with only minor xylem expression or activity. Levels of caffeate, the preferred substrate of 4CL5, increased in line with significant upregulation of caffeoyl shikimate esterase1 Upregulation of caffeoyl-CoA O-methyltransferase1 and downregulation of F5Hs are consistent with preferential funneling of 4CL5 products toward G-lignin biosynthesis at the expense of S-lignin. Thus, transcriptional and metabolic adaptations to 4CL1-knockout appear to have enabled 4CL5 catalysis at a level sufficient to sustain lignification. Finally, genes involved in sulfur assimilation, the glutathione-ascorbate cycle, and various antioxidant systems were upregulated in the mutants, suggesting cascading responses to perturbed thioesterification in lignin biosynthesis.


Assuntos
Lignina/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Catálise , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Xilema/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA