Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(4): 2538-2544, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33500072

RESUMO

Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO2 growth process has been proposed to explain the morphology of SnO2 nanowires.

2.
Sensors (Basel) ; 20(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114283

RESUMO

In this work, a highly sensitive dual-core configured microchannel-based plasmonic refractive index (RI) sensor was investigated, which can be used for low RI detection. Both the sensing layer and the plasmonic material layer were built outside of the fiber design to detect the surrounding medium's RI changes. Additionally, the effects of different plasmonic materials gold (Au), silver (Ag), and copper (Cu) toward sensitivity were investigated for the same structure. An adhesive agent was used in this work, titanium dioxide (TiO2), and was coated on top of the plasmonic material to prevent the oxidation of Ag and Cu. The coupling strength between the fundamental mode and the surface plasmon polariton (SPP) mode was observed to be very strong due to the TiO2 adhesive agent. With a resolution of 7.41 × 10-7 RIU, maximum wavelength sensitivity (WS) of 135,000 nm/RIU and amplitude sensitivity (AS) of 3239 RIU-1 were achieved using the proposed sensor while using Au as a plasmonic material for an analyte RI range of 1.29-1.39. A detailed study of relevant literature revealed that the achieved wavelength sensitivity for plasmonic material gold (Au) is the highest among reported photonic crystal fiber (PCF)-surface plasmon resonance (SPR) sensors to date.

3.
Sensors (Basel) ; 19(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480622

RESUMO

In this paper, a low-loss, spiral lattice photonic crystal fiber (PCF)-based plasmonic biosensor is proposed for its application in detecting various biomolecules (i.e., sugar, protein, DNA, and mRNA) and biochemicals (i.e., serum and urine). Plasmonic material gold (Au) is employed externally to efficiently generate surface plasmon resonance (SPR) in the outer surface of the PCF. A thin layer of titanium oxide (TiO2) is also introduced, which assists in adhering the Au layer to the silica fiber. The sensing performance is investigated using a mode solver based on the finite element method (FEM). Simulation results show a maximum wavelength sensitivity of 23,000 nm/RIU for a bio-samples refractive index (RI) detection range of 1.32-1.40. This sensor also exhibits a very low confinement loss of 0.22 and 2.87 dB/cm for the analyte at 1.32 and 1.40 RI, respectively. Because of the ultra-low propagation loss, the proposed sensor can be fabricated within several centimeters, which reduces the complexity related to splicing, and so on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...