Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13949-13961, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739624

RESUMO

Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon-carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer-Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C-C bond, which is rate-determining. The C-C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.

2.
ACS Appl Mater Interfaces ; 16(14): 17574-17586, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38556732

RESUMO

The efficiency of oxygen electrocatalysis is a key factor in diverse energy domain applications, including the performance of metal-air batteries, such as aqueous Zinc (Zn)-air batteries. We demonstrate here that the doping of cobalt oxide with optimal amounts of copper (abbreviated as Cu-doped Co3O4) results in a stable and efficient bifunctional electrocatalyst for oxygen reduction (ORR) and evolution (OER) reactions in aqueous Zn-air batteries. At high Cu-doping concentrations (≥5%), phase segregation occurs with the simultaneous presence of Co3O4 and copper oxide (CuO). At Cu-doping concentrations ≤5%, the Cu ion resides in the octahedral (Oh) site of Co3O4, as revealed by X-ray diffraction (XRD)/Raman spectroscopy investigations and molecular dynamics (MD) calculations. The residence of Cu@Oh sites leads to an increased concentration of surface Co3+-ions (at catalytically active planes) and oxygen vacancies, which is beneficial for the OER. Temperature-dependent magnetization measurements reveal favorable d-orbital configuration (high eg occupancy ≈ 1) and a low → high spin-state transition of the Co3+-ions, which are beneficial for the ORR in the alkaline medium. The influence of Cu-doping on the ORR activity of Co3O4 is additionally accounted in DFT calculations via interactions between solvent water molecules and oxygen vacancies. The application of the bifunctional Cu-doped (≤5%) Co3O4 electrocatalyst resulted in an aqueous Zn-air battery with promising power density (=84 mW/cm2), stable cyclability (over 210 cycles), and low charge/discharge overpotential (=0.92 V).

3.
Phys Chem Chem Phys ; 25(33): 22022-22031, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555332

RESUMO

Double perovskite materials have shown promising applications as an electrode in solid oxide fuel cells and Li-air batteries for oxygen reduction, evolution, and transport. However, degradation of the material due to cation migration to the surface, forming secondary phases, poses an existential bottleneck in materials development. Herein, a theoretical approach combining density functional theory and molecular dynamics simulations is presented to study the Ba-cation segregation in a double perovskite NdBaCo2O5+δ. Solutions to circumvent segregation at the molecular level are presented in two different forms by applying strain and introducing dopants in the structure. On applying compressive strain or Ca as a dopant in the NBCO structure, segregation is estimated to reduce significantly. A more direct way of estimating cation segregation is proposed in MD simulations, wherein the counting of the cations migrating from the sub-surface layers to the surface provided a reliable theoretical assessment of the level of cation segregation.

4.
ACS Sustain Chem Eng ; 10(33): 10858-10869, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36035440

RESUMO

Acetate is emerging as a promising feedstock for biorefineries as it can serve as an alternate carbon source for microbial cell factories. In this study, we expressed acetyl-CoA synthase in Yarrowia lipolytica PSA02004PP, and the recombinant strain grew on acetate as the sole carbon source and accumulated succinic acid or succinate (SA). Unlike traditional feedstocks, acetate is a toxic substrate for microorganisms; therefore, the recombinant strain was further subjected to adaptive laboratory evolution to alleviate toxicity and improve tolerance against acetate. At high acetate concentrations, the adapted strain Y. lipolytica ACS 5.0 grew rapidly and accumulated lipids and SA. Bioreactor cultivation of ACS 5.0 with 22.5 g/L acetate in a batch mode resulted in a maximum cell OD600 of 9.2, with lipid and SA accumulation being 0.84 and 5.1 g/L, respectively. However, its fed-batch cultivation yielded a cell OD600 of 23.5, SA titer of 6.5 g/L, and lipid production of 1.5 g/L with an acetate uptake rate of 0.2 g/L h, about 2.86 times higher than the parent strain. Cofermentation of acetate and glucose significantly enhanced the SA titer and lipid accumulation to 12.2 and 1.8 g/L, respectively, with marginal increment in cell growth (OD600: 26.7). Furthermore, metabolic flux analysis has drawn insights into utilizing acetate for the production of metabolites that are downstream to acetyl-CoA. To the best of our knowledge, this is the first report on SA production from acetate by Y. lipolytica and demonstrates a path for direct valorization of sugar-rich biomass hydrolysates with elevated acetate levels to SA.

5.
ACS Omega ; 7(7): 5605-5614, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224322

RESUMO

With the escalating demand for sustainable energy sources, the sodium-ion batteries (SIBs) appear as a pragmatic option to develop large energy storage grid applications in contrast to existing lithium-ion batteries (LIBs) owing to the availability of cheap sodium precursors. Nevertheless, the commercialization of SIBs has not been carried out so far due to the inefficacies of present electrode materials, particularly cathodes. Thus, from a future application perspective, this short review highlights the intrinsic challenges and corresponding strategies for the extensively researched layered transition metal oxides, polyanionic compounds, and Prussian blue analogues. In addition, the commercial feasibility of existing materials considering relevant parameters is also discussed. The insights provided in the current review may serve as an aid in designing efficient cathode materials for state-of-the-art SIBs.

6.
Langmuir ; 37(47): 13799-13809, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34766776

RESUMO

Pd-doped chabazite (Pd/CHA) offers unique opportunities to adsorb and desorb NOx in the target temperature range for application as a passive NOx adsorber (PNA). The ability of Pd/CHA to trap NOx emissions at low temperatures (<200 °C) is facilitated by the binding of NOx species at various Pd sites available in the CHA framework. Density functional theory (DFT) simulations are performed to understand Pd speciation in CHA and the interaction of NO with Pd/CHA to explain the mechanisms of NO adsorption, oxidation, and desorption processes. The calculations are used to elucidate the important role of Pd1+ cationic species, anchored at 6MR-3NN, in providing a strong (Eb = -272 kJ/mol) NO adsorption site in Pd/CHA. For NO release, the redox transformation of Pd species comes into play and Pd1+ species are suggested to transform into cationic Pd2+, [PdOH]+, or [Pd-O-Pd]2+ species, all of which show significantly reduced NO binding (-116, -153, and -117 kJ/mol, respectively) as compared to Pd1+. This enables NO desorption at the operating temperature of a downstream catalyst for subsequent catalytic reduction.


Assuntos
Zeolitas , Adsorção , Catálise , Temperatura
7.
Nanoscale ; 13(8): 4451-4466, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33404024

RESUMO

C-H bond activation steps in non-oxidative methane dehydroaromatization (MDA), constitute a key functionalization of the reactant and adsorbed species to form aromatics. Previous studies have focused on studying the energetics of these steps at the most stable active sites involving molybdenum carbide species. Herein, a different paradigm is presented via studying the reactivity of a metastable molybdenum carbide (Mo2C6) nanocluster for the C-H bond activation of methane, ethane, and ethylene and comparing it with the reactivity of the lowest energy Mo2C6 nanocluster. Interestingly, the metastable nanocluster is observed to result in a consistent reduction (by half) in the C-H bond activation barrier of the respective alkane and alkene molecules compared to the global minimum isomer. This specific metastable form of the nanocluster is identified from a cascade genetic algorithm search, which facilitated a rigorous scan of the potential energy surface. We attribute this significant lowering of the C-H bond activation barrier to unique co-planar orbital overlap between the reactant molecule and active centers on the metastable nanocluster. Based on geometrical and orbital analysis of the transition states arising during the C-H bond activation of methane, ethane, and ethylene, a proton-coupled electron transfer mechanism is proposed that facilitated C-H bond cleavage. Motivated by the high reactivity for C-H bond activation observed on the metastable species, a contrasting framework to analyze the elementary-step rate contributions is presented. This is based on the statistical ensemble analysis of nanocluster isomers, where the calculated rates on respective isomers are normalized with respect to the Boltzmann probability distribution. From this framework, the metastable isomer is observed to provide significant contributions to the ensemble average representations of the rate constants calculated for C-H bond activation during the MDA reaction.

8.
ACS Appl Bio Mater ; 4(3): 2453-2464, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014364

RESUMO

The last few decades witnessed a remarkable advancement in the field of molecular anion receptors. A variety of anion binding motifs have been discovered, and large number of designer molecular anion receptors with high selectivity are being reported. However, anion detection in an aqueous medium is still a formidable challenge as evident from only a miniscule of synthetic systems available in the literature. We, herein, report 5,5'-dithio-bis(2-nitrobenzoic acid) (Ellman's reagent) appended with amino acids as supersensitive anion sensors that can detect F- and H2PO4- ions in both aqueous as well as organic media. Interestingly, the sensors showed a dual response to anions, viz., chromogenic response in organic medium and electrochemical response in aqueous solutions. Various spectroscopic techniques such as UV-vis and 1H NMR are used to investigate the binding studies in acetonitrile, whereas electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) are employed to explore the anion binding in water. The host-guest complex stoichiometry and binding constants are calculated using the BindFit software. The geometry of host-guest complex has been optimized by the density functional theory (DFT) method. These molecules are versatile sensors since these function in both water and acetonitrile with extremely low limit of detection (LOD) up to 0.07 fM and limit of quantification (LOQ) up to 0.23 fM. To our knowledge, the present system is the first example of a sensor that can detect the lowest concentration of anions in water quantitatively. The minimalistic design strategy presented here opens up the innumerable possibilities for designing dual anion sensors in a one fell swoop.


Assuntos
Aminoácidos/química , Materiais Biocompatíveis/química , Flúor/análise , Indicadores e Reagentes/química , Fosfatos/análise , Ânions/análise , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula
9.
RSC Adv ; 10(51): 30656-30670, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516025

RESUMO

An efficient route to produce oxanorbornene, a precursor for the production of bio-based trimellitic acid (TMLA) via the Diels-Alder (DA) reaction of biomass-derived dienes and dienophiles has been proposed by utilizing density functional theory (DFT) simulations. It has been suggested that DA reaction of dienes such as 5-hydroxymethyl furfural (HMF), 2,5-dimethylfuran (DMF), furan dicarboxylic acid (FDCA) and biomass-derived dienophiles (ethylene derivatives e.g., acrolein, acrylic acid, etc.) leads to the formation of an intermediate product oxanorbornene, a precursor for the production of TMLA. The activation barriers for the DA reaction were correlated to the type of substituent present on the dienes and dienophiles. Among the dienophiles, acrolein was found to be the best candidate showing a low activation energy (<40 kJ mol-1) for the cycloaddition reaction with dienes DMF, HMF and hydroxy methyl furoic acid (HMFA). The FMO gap and (IPdiene + EAdienophile)/2 were both suggested to be suitable descriptors for the DA reaction of electron-rich diene and electron-deficient dienophile. Further solvents did not have a significant effect on the activation barrier for DA reaction. In contrast, the presence of a Lewis acid was seen to lower the activation barrier due to the reduction in the FMO gap.

10.
Nanoscale ; 11(44): 21404-21418, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31674610

RESUMO

Mechanistic studies, utilizing molecular dynamics (MD) and density functional theory (DFT) calculations, were undertaken to provide a molecular level explanation of Ba cation segregation in double perovskite GdBaCo2O5+δ (GBCO) electrodes. The energy (γ) of the terminal surface having only Ba cations, indicated the surface to be the most stable (γ = 6.7 kJ mol-1Å-2) as compared to the other surfaces. MD simulations elaborated on the cation disorder in the near surface region where Ba cations in the subsurface region were observed to migrate towards the surface. This led to a disruption in cation ordering with a propensity to form multiphases in the near surface region. In the near surface zone, oxygen anion diffusivity was observed to be reduced by an order of magnitude (D = 1.6 × 10-11 cm2 s-1 at 873 K) as compared to the bulk oxygen anion diffusivity value (D = 1.96 × 10-10 cm2 s-1 at 873 K). A novel idea was then proposed to control the degree of surface segregation of Ba cations by applying nanostructuring of the GBCO material in the form of nanoparticles. MD simulations elucidated that the near surface region having a high degree of cation disorder in the nanostructured GBCO may regain back the oxygen anion diffusivity value (D = 3.98 × 10-10 cm2 s-1, at 873 K) comparable to the bulk core region (D = 2.51 × 10-10 cm2 s-1, at 873 K). A proof of concept experiment was setup to test this hypothesis. The electrochemical performance of the electrode, fabricated using GBCO nanoparticles, was measured to improve by 15% as compared to the electrode synthesized with a bulk size GBCO material. This was attributed to the control in Ba-cation segregation, obtained on nanostructuring which resulted in higher oxygen anion transport in the near-surface region of the electrode material. XPS characterization of the surface of the nanostructured GBCO materials supported this assertion.

11.
ACS Omega ; 4(6): 9878-9888, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460078

RESUMO

We report the electrochemical performance of nanostructures of Na0.66V4O10 as cathode material for rechargeable batteries. The Rietveld refinement of room-temperature X-ray diffraction pattern shows the monoclinic phase with C2/m space group. The cyclic voltammetry curves of prepared half-cells exhibit redox peaks at 3.1 and 2.6 V, which are due to two-phase transition reaction between V5+/4+ and can be assigned to the single-step deintercalation/intercalation of Na ion. We observe a good cycling stability with specific discharge capacity (measured vs Na+/Na) between 80 (±2) and 30 (±2) mAh g-1 at current densities of 3 and 50 mA g-1, respectively. The electrochemical performance of Na0.66V4O10 electrode was also tested with Li anode, which showed higher capacity but decayed faster than Na. Using density functional theory, we calculate the Na vacancy formation energies: 3.37 eV in the bulk of the material and 2.52 eV on the (100) surface, which underlines the importance of nanostructures.

12.
ACS Appl Mater Interfaces ; 11(28): 25243-25253, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31260249

RESUMO

Oxygen reduction reaction in a double perovskite material, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), was studied for application as a cathode in a solid oxide fuel cell (SOFC). Electrochemical measurements were performed on a geometrically well-defined dense thin-film (0.8-2 µm thickness) electrode, fabricated as a symmetric cell. In combination with density functional theory (DFT) and molecular dynamics (MD) simulations, experiments provided an insight into the operating mechanism of the SOFC material tested at an open-circuit voltage. The dense thin-film electrode of PBSCF showed a thickness-dependent electrochemical performance, suggesting bulk diffusion limitation. To understand the origin of this diffusion-limiting electrochemical performance, DFT calculations were utilized to calculate the surface (γ) and oxygen vacancy formation (EOV) energies. For example, EOV in the Pr plane (190 kJ/mol) of PBSCF was measured to be lower than that of the BaSr plane (EOV = 297 kJ/mol). In addition, oxygen vacancies were difficult to be created in the BaSr/CoFe terminal surface (EOV = 341.6 kJ/mol) as compared to other terminal surfaces. MD simulations further elaborated on the nature of cation disordering in the surface and subsurface regions, consequently leading to the preferential segregation of the Ba cations to the surface, which is a known phenomenon in such double perovskite materials. Because of cation disordering and segregation of Ba species, the oxygen anion diffusivity (∼10-12 cm2 s-1), calculated from MD, in the near-surface region was observed to be 2 orders of magnitude lesser than that of the bulk (D = 2.98 × 10-10 cm2 s-1) of the material at 973 K. Surface characterization of the thin-film electrode using X-ray photoelectron spectroscopy was indicative of a nonperovskite Ba2+ phase on the electrode surface. The segregation of Ba cations was linked with the transport of oxygen anions, which was limiting the electrochemical performance of the electrode.

13.
Langmuir ; 34(4): 1300-1310, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29281290

RESUMO

The interaction of methionine (Met) with different bimetallic-segregated surfaces comprising a uniform distribution of strips and islands of Au on the Pd(111) surface was examined using molecular dynamics (MD) simulations. Out of all the segregated and uniformly doped surfaces studied, the design of Pd-Au islands showed some reduction in the interaction energy (Eint = -43.7 kJ/mol) as compared to that of the pure Pd(111) surface (Eint = -50 kJ/mol) for a single Met molecule. However, at a higher coverage of 9 Met molecules/simulation cell, none of the Pd-Au alloy surfaces showed any improvement as compared to the Pd(111) surface. In order to develop a comprehensive understanding of the nature of the nonbonded interaction of aqueous biogenic impurities with the Pd catalyst surface, the MD study was extended to include a variety of aliphatic, S-containing, aromatic, and polar amino acids. The potential of mean force (PMF) profiles were observed to be distinct for each class of amino acids with substantial differences among amino acids with acidic and basic side chains. The side chains of all the polar and aromatic amino acids showed direct contact with the surface while aliphatic amino acids had their hydrophobic side chain aligned away from the surface. Interestingly, lysine (Lys) and tyrosine (Tyr) were the only two amino acids which interacted preferentially via the distant backbone nitrogen and backbone oxygen, respectively, despite their side chains being in direct contact with the metal surface. The strength of interaction was correlated with the size of the amino acid; the interaction energies were observed to be the maximum for large molecules such as arginine (Arg, Eint = -87.7 kJ/mol) and tryptophan (Trp, Eint = -73.4 kJ/mol), while it was a minimum for aliphatic amino acids such as alanine (Ala, Eint = -10.9 kJ/mol). The study is focused on examining the sensitivity of the choice of the preferential interaction site, conformational preferences, and interaction energies to the side-chain specificity.


Assuntos
Aminoácidos/química , Ouro/química , Paládio/química , Catálise , Lisina/química , Simulação de Dinâmica Molecular , Tirosina/química , Água/química
14.
J Am Chem Soc ; 135(15): 5699-708, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23517240

RESUMO

2-Pyrones, such as triacetic acid lactone, are a promising class of biorenewable platform chemicals that provide access to an array of chemical products and intermediates. We illustrate through the combination of results from experimental studies and first-principle density functional theory calculations that key structural features dictate the mechanisms underlying ring-opening and decarboxylation of 2-pyrones, including the degree of ring saturation, the presence of C═C bonds at the C4═C5 or C5═C6 positions within the ring, as well as the presence of a ß-keto group at the C4 position. Our results demonstrate that 2-pyrones undergo a range of reactions unique to their structure, such as retro-Diels-Alder reactions and nucleophilic addition of water. In addition, the reactivity of 2-pyrones and the final products formed is shown to depend on the solvent used and the acidity of the reaction environment. The mechanistic insights obtained here provide guidance for the selective conversion of 2-pyrones to targeted chemicals.


Assuntos
Ácidos Carboxílicos/química , Furanos/química , Pironas/química , Água/química , Modelos Moleculares , Conformação Molecular , Teoria Quântica
15.
Appl Biochem Biotechnol ; 141(2-3): 377-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18025563

RESUMO

Soil contaminated with vegetable cooking oil was used in the isolation of a lipase-producing microorganism. The effectiveness of two different statistical design techniques in the screening and optimization of media constituents for enhancing the lipolytic activity of the soil microorganism was determined. The media constituents for lipase production by the isolated soil microorganism were screened using a Plackett-Burman design. Oil, magnesium sulfate, and ferrous sulfate were found to influence lipolytic activity at 24 and 72 h of culture with very high confidence levels. Whereas oil and ferrous sulfate showed a positive effect, magnesium sulfate indicated a negative effect on the lipolytic activity. A central composite design (CCD) followed by response surface methodology was used in optimizing these media constituents for enhancing the lipolytic activity. The regression model obtained for 72 h of lipolytic activity was found to be the best fit, with R 2=0.97, compared with the other model. An optimum combination at 9.3 mL/L of oil, 0.311 g/L of magnesium sulfate, and 0.007 g/L of ferrous sulfate in the media gave a maximum measured lipolytic activity of 7.1 U/mL at 72 h of culture. This increase in lipolytic activity was found to be 10.25% higher than the maximum experimentally observed value in the CCD.


Assuntos
Biotecnologia/métodos , Microbiologia do Solo , Meios de Cultura/farmacologia , Compostos Ferrosos/química , Lipase/química , Lipólise , Sulfato de Magnésio/química , Modelos Estatísticos , Modelos Teóricos , Óleos , Análise de Regressão , Solo , Especificidade por Substrato , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...