Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 106(4): 368504231215593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993993

RESUMO

This research investigates the viability of using Syzygium aromaticum (clove) as a natural dye for wool yarn through the application of microwave treatment and optimization using central composite design (CCD). As concerns grow over the environmental impact of synthetic dyes and their detrimental disposal in water bodies, the search for eco-friendly alternatives becomes imperative to revolutionize the textile industry. Microwave-assisted extraction of the colorant from clove powder is explored as an efficient and sustainable method, minimizing solvent usage and energy consumption compared to conventional techniques. To enhance colorfastness properties while eliminating the need for toxic mordants, green alternatives such as Al, Fe, and tannic acid, combined with plant phenolics from red sumac, pomegranate rind, and weld, are employed. According to the analysis of CCD, the higher color strength value 18.1653 was achieved using pH = 3, time = 50 min, temperature = 70 °C, and salt concentration = 1.5 g/100 mL. The optimized dyeing conditions also showed a maximum level of colorfastness properties of 5 for light, 5 for wash, 5 for dry rubbing, and 4 for wet rubbing. The findings from Fourier-transform infrared spectroscopy and scanning electron microscopy analyses provide valuable insights into the chemical and morphological changes induced by microwave treatment and dyeing with clove extract. The results affirm the presence of eugenol as a potential active molecule responsible for the captivating color of clove flower buds, validating its suitability as a natural dye source for wool. This study highlights the promising potential of microwave-assisted extraction and plant-based biomolecules as innovative and environmentally friendly approaches in natural dyeing, paving the way for a more sustainable future in the textile industry. Embracing these eco-friendly practices allows the textile sector to reduce its ecological footprint and contribute to a cleaner and greener environment. Further research and implementation of these techniques can foster a more harmonious coexistence with nature, ensuring a healthier ecosystem for all.


Assuntos
Syzygium , , Animais , Corantes/química , Corantes/farmacologia , Syzygium/química , Micro-Ondas , Ecossistema
2.
PLoS One ; 15(11): e0242739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33216794

RESUMO

Potassium (K+) acquisition, translocation and cellular homeostasis are mediated by various membrane transport systems in all organisms. We identified and described an ion channel in the ectomycorrhizal fungus Hebeloma cylindrosporum (HcSKC) that harbors features of animal voltage-dependent Shaker-like K+ channels, and investigated its role in both free-living hyphae and symbiotic conditions. RNAi lines affected in the expression of HcSKC were produced and used for in vitro mycorrhizal assays with the maritime pine as host plant, under standard or low K+ conditions. The adaptation of H. cylindrosporum to the downregulation of HcSKC was analyzed by qRT-PCR analyses for other K+-related transport proteins: the transporters HcTrk1, HcTrk2, and HcHAK, and the ion channels HcTOK1, HcTOK2.1, and HcTOK2.2. Downregulated HcSKC transformants displayed greater K+ contents at standard K+ only. In such conditions, plants inoculated with these transgenic lines were impaired in K+ nutrition. Taken together, these results support the hypothesis that the reduced expression of HcSKC modifies the pool of fungal K+ available for the plant and/or affects its symbiotic transfer to the roots. Our study reveals that the maintenance of K+ transport in H. cylindrosporum, through the regulation of HcSKC expression, is required for the K+ nutrition of the host plant.


Assuntos
Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica/fisiologia , Hebeloma/fisiologia , Micorrizas/fisiologia , Pinus , Superfamília Shaker de Canais de Potássio/biossíntese , Simbiose/fisiologia , Pinus/microbiologia , Pinus/fisiologia , Potássio/metabolismo
3.
Plant Physiol Biochem ; 155: 815-827, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882619

RESUMO

Cadmium is a phytotoxic metal which threatens the global food safety owing to its higher retention rates and non-biodegradable nature. Optimal study of microbe-assisted bioremediation is a potential way to minimize the adversities of Cd on plants. Current study was aimed to isolate, identify and characterize Cd tolerant PGPBs from industrially contaminated soil and to evaluate the potential of plant-microbe synergy for the growth augmentation and Cd remediation. The Acinetobacter sp. SG-5, identified through 16S rRNA gene sequence analysis, was able to tolerate 1000 mg/l of applied Cd stress and ability of in vitro indole-3-acetic acid production, phosphate solubilization, as well as 1-aminocyclopropane-1-carboxylic acid deaminase activity. A Petri plate experiment was designed to investigate the impact of Acinetobacter sp. SG-5 on applied Cd toxicity (0, 6, 12, 18, 24, 30 µM) in maize cultivars (3062-Cd tolerant, 31P41-Cd susceptible). Results revealed that non-inoculated maize plants were drastically affected with applied Cd treatments for growth, antioxidants and mineral ions acquisition predominantly in susceptible cultivar (31P41). PGPB inoculation positively influenced the maize growth by enhanced anti-oxidative potential coupled with optimum level of nutrients (K, Ca, Mg, Zn). Analysis of morpho-physio-biochemical traits after PGPB application revealed that substantial Cd tolerance was acquired by susceptible cv. 31P41 than tolerant cv. 3062 under applied Cd regimes. Research outcomes may be important for understanding the growth responses of Cd susceptible and tolerant maize cultivars under Acinetobacter sp. SG-5 inoculation and likely to provide efficient approaches to reduce Cd retention in edible plant parts and/or Cd bioremediation.


Assuntos
Acinetobacter , Antioxidantes/fisiologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Zea mays/fisiologia , Biodegradação Ambiental , Raízes de Plantas/química , RNA Ribossômico 16S , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
4.
Biomolecules ; 10(4)2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290389

RESUMO

Soil and water contamination from heavy metals and metalloids is one of the most discussed and caused adverse effects on food safety and marketability, crop growth due to phytotoxicity, and environmental health of soil organisms. A hydroponic investigation was executed to evaluate the influence of citric acid (CA) on copper (Cu) phytoextraction potential of jute (Corchorus capsularis L.). Three-weeks-old seedlings of C. capsularis were exposed to different Cu concentrations (0, 50, and 100 µM) with or without the application of CA (2 mM) in a nutrient growth medium. The results revealed that exposure of various levels of Cu by 50 and 100 µM significantly (p < 0.05) reduced plant growth, biomass, chlorophyll contents, gaseous exchange attributes, and damaged ultra-structure of chloroplast in C. capsularis seedlings. Furthermore, Cu toxicity also enhanced the production of malondialdehyde (MDA) which indicated the Cu-induced oxidative damage in the leaves of C. capsularis seedlings. Increasing the level of Cu in the nutrient solution significantly increased Cu uptake by the roots and shoots of C. capsularis seedlings. The application of CA into the nutrient medium significantly alleviated Cu phytotoxicity effects on C. capsularis seedlings as seen by plant growth and biomass, chlorophyll contents, gaseous exchange attributes, and ultra-structure of chloroplast. Moreover, CA supplementation also alleviated Cu-induced oxidative stress by reducing the contents of MDA. In addition, application of CA is helpful in increasing phytoremediation potential of the plant by increasing Cu concentration in the roots and shoots of the plants which is manifested by increasing the values of bioaccumulation (BAF) and translocation factors (TF) also. These observations depicted that application of CA could be a useful approach to assist Cu phytoextraction and stress tolerance against Cu in C. capsularis seedlings grown in Cu contaminated sites.


Assuntos
Cloroplastos/ultraestrutura , Ácido Cítrico/farmacologia , Cobre/toxicidade , Corchorus/crescimento & desenvolvimento , Corchorus/fisiologia , Plântula/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Corchorus/efeitos dos fármacos , Corchorus/ultraestrutura , Gases/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Componente Principal , Plântula/efeitos dos fármacos , Plântula/ultraestrutura
5.
3 Biotech ; 10(2): 40, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31988834

RESUMO

This study was conducted to determine the ability of a bacterial strain FSS2C to ameliorate growth of wheat plants grown under induced stress of reactive black-5 (RB-5). The strain was taxonomically identified as Bacillus firmus on the basis of its 16S rRNA gene sequence analysis. The B. firmus FSS2C was found physiologically potent in phosphate solubilization, indole-3-acetic acid production and ammonia synthesis in the presence of varying concentrations of azo dye RB-5. Moreover, it decolorized RB-5 in vitro with the maximum decolorization (%) found at pH 7 and 30 °C. Inoculation of wheat plants, growing under stress induced by RB-5 dye, with rifampicin-resistant derivatives of the strain FSS2C substantially reduced the cellular oxidative stress, thereby resulting in higher plant biomass as compared to non-inoculated plants. Similarly, the inoculated plants revealed higher nutrient content in shoots as compared to non-inoculated ones. It was concluded that B. firmus strain FSS2C alleviated the oxidative stress impairment caused by reactive black-5 in wheat plants. Therefore, the strain can be used as bio-inoculant in wastewater irrigated soils.

6.
Environ Sci Pollut Res Int ; 26(33): 34633-34644, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31654306

RESUMO

Lead (Pb) is highly toxic to plants because it severely affects physiological processes by altering nutrient solution pH. The current study elucidated Pb-induced changes in nutrient solution pH and its effect on physiology of two Solanum melongena L. cultivars (cv. Chuttu and cv. VRIB-13). Plants were grown in black plastic containers having 0, 15, 20, and 25 mg L-1 PbCl2 in nutrient solutions with starting pH of 6.0. pH changes by roots of S. melongena were continuously monitored for 8 days, and harvested plants were analyzed for physiological and biochemical attributes. Time scale studies revealed that cv. Chuttu and cv. VRIB-13 responded to Pb stress by causing acidification and alkalinization of growth medium during the first 48 h, respectively. Both cultivars increased nutrient solution pH, and maximum pH rise of 1.21 units was culminated by cv. VRIB-13 at 15 mg L-1 Pb and 0.8 units by cv. Chuttu at 25 mg L-1 Pb treatment during the 8-day period. Plant biomass, photosynthetic pigments, ascorbic acid, total amino acid, and total protein contents were significantly reduced by Pb stress predominantly in cv. Chuttu than cv. VRIB-13. Interestingly, chlorophyll contents of cv. VRIB-13 increased with increasing Pb levels. Pb contents of roots and shoots of both cultivars increased with applied Pb levels while nutrient (Ca, Mg, K, and Fe) contents decreased predominately in cv. Chuttu. Negative correlations were identified among Pb contents of eggplant roots and shoots and plant biomasses, leaf area, and free anthocyanin. Taken together, growth medium alkalinization, lower root to shoot Pb translocation, and optimum balance of nutrients (Mg and Fe) conferred growth enhancement, ultimately making cv. VRIB-13 auspicious for tolerating Pb toxicity as compared with cv. Chuttu. The research outcomes are important for devising metallicolous plant-associated strategies based on plant pH modulation response and associated metal uptake to remediate Pb-polluted soil.


Assuntos
Chumbo/toxicidade , Poluentes do Solo/toxicidade , Solanum melongena/fisiologia , Transporte Biológico/efeitos dos fármacos , Biomassa , Poluição Ambiental , Homeostase , Concentração de Íons de Hidrogênio , Chumbo/metabolismo , Nutrientes , Folhas de Planta/metabolismo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Solanum melongena/efeitos dos fármacos
7.
Plant Physiol Biochem ; 119: 50-58, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28843888

RESUMO

The germination, seedling vigor, crop establishment and yield of agronomically important crops is negatively affected by soil salinity. The current study aimed to investigate the ability of exogenous fertigation by sodium nitroprusside (SNP) to induce salt tolerance in four high yielding wheat cultivars (Sahar-06, Punjab-11, Millat-11 and Galaxy-13) that differ in their response to salt stress in terms of biomass production, oxidative defense mechanisms and grain yield. Three levels of SNP (0, 0.1 and 0.2 mM) were used for seed soaking. During soaking the seeds were kept in the dark. After soaking for 12 h the seeds were air-dried for 5 h before sowing. Salinity caused a significant reduction in biomass and grain yield, while it increased proline (Pro), ascorbic acid (AsA), hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. Cultivar Sahar-06 and Galaxy-13 were found more tolerant to salinity based on shoot length root fresh and dry wights, 100 grain weight, decreased MDA and H2O2 accumulation, phenolic and ascorbic acid (AsA) contents, accumulation of proline, activities of SOD, POD and CAT as compared to the other cultivars. Seed priming with SNP was effective in reducing the adverse effects of salt stress induced oxidative stress on plant biomass and grain yield in all the studied wheat cultivars, but maximum amelioration of salt stress tolerance by SNP treatment was found in cv. Sahar-06. The increased salt tolerance in wheat plants by SNP seed priming might be due to the role of NO in improving seed vigor and germination and early establishment of seedlings with better growth. 0.1 mM SNP was found the most effective in improving salt tolerance, as compared to other SNP concentations. Exogenous SNP fertigation increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and the contents of AsA, Pro and total phenolics content (TPC) in the salt stressed wheat plants. Our data indicate that SNP-priming induced salt tolerance by up-regulating the antioxidative defense mechanisms resulting in better biomass production and grain yield.


Assuntos
Germinação/efeitos dos fármacos , Nitroprussiato/farmacologia , Pressão Osmótica/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
8.
Fungal Genet Biol ; 58-59: 53-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850603

RESUMO

Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Hebeloma/genética , Hebeloma/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/fisiologia , Transporte Proteico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...