Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22756, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123636

RESUMO

The current study provides the numerical performances of the fractional kind of breast cancer (FKBC) model, which are based on five different classes including cancer stem cells, healthy cells, tumor cells, excess estrogen, and immune cells. The motive to introduce the fractional order derivatives is to present more precise solutions as compared to integer order. A stochastic computing reliable scheme based on the Levenberg Marquardt backpropagation neural networks (LMBNNS) is proposed to solve three different cases of the fractional order values of the FKBC model. A designed dataset is constructed by using the Adam solver in order to reduce the mean square error by taking the data performances as 9% for both testing and validation, while 82% is used for training. The correctness of the solver is approved through the negligible absolute error and matching of the solutions for each model's case. To validates the accuracy, and consistency of the solver, the performances based on the error histogram, transition state, and regression for solving the FKBC model.


Assuntos
Neoplasias , Doenças Ovarianas , Feminino , Humanos , Nível de Saúde , Motivação , Células-Tronco Neoplásicas , Redes Neurais de Computação
2.
Sci Rep ; 13(1): 12827, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550482

RESUMO

Due to enhanced heat transfer rate, the nanofluid and hybrid nanofluids have significant industrial uses. The principal objective of this exploration is to investigate how thermal radiation influences the velocity and temperature profile. A water-based rotational nanofluid flow with constant angular speed [Formula: see text] is considered for this comparative study. A similarity conversion is applied to change the appearing equations into ODEs. Three different nanoparticles i.e., copper, aluminum, and titanium oxide are used to prepare different nanofluids for comparison. The numerical and graphical outputs are gained by employing the bvp-4c procedure in MATLAB. The results for different constraints are represented through graphs and tables. Higher heat transmission rate and minimized skin friction are noted for triple nanoparticle nanofluid. Skin coefficients in the x-direction and y-direction have reduced by 50% in trihybrid nanofluid by keeping mixed convection levels between the range [Formula: see text]. The heat transmission coefficient with raising the levels of thermal radiation between [Formula: see text] and Prandlt number [Formula: see text] has shown a 60% increase.

3.
Sci Rep ; 13(1): 7828, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188712

RESUMO

This research analyzes the three-dimensional magneto hydrodynamic nanofluid flow through chemical reaction and thermal radiation above the dual stretching surface in the presence of an inclined magnetic field. Different rotational nanofluid and hybrid nanofluids with constant angular velocity [Formula: see text] for this comparative study are considered. The constitutive relations are used to gain the equations of motion, energy, and concentration. This flow governing extremely non-linear equations cannot be handled by an analytical solution. So, these equations are transformed into ordinary differential equalities by using the similarity transformation and then handled in MATLAB by applying the boundary values problem practice. The outcomes for the considered problem are accessed through tables and graphs for different parameters. A maximum heat transfer amount is observed in the absence of thermal radiation and when the inclined magnetic field and axis of rotation are parallel.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500800

RESUMO

This research investigates the two different hybrid nanofluid flows between two parallel plates placed at two different heights, y0 and yh, respectively. Water-based hybrid nanofluids are obtained by using Al2O3, TiO2 and Cu as nanoparticles, respectively. The upper-level plate is fixed, while the lower-level plate is stretchable. The fluid rotates along the y-axis. The governing equations of momentum, energy and concentration are transformed into partial differential equations by using similarity transformations. These transformed equations are grasped numerically at MATLAB by using the boundary value problem technique. The influence of different parameters are presented through graphs. The numerical outcomes for rotation, Nusselt, Prandtl, and Schmidt numbers are obtained in the form of tables. The heat transfer rate increases by augmentation in the thermophoresis parameter, while it decays by increasing the Reynolds number. Oxide nanoparticles hybrid nanofluid proved more efficient as compared to mixed nanoparticles hybrid nanofluid. This research suggests using oxide nanoparticles for good heat transfer.

5.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630922

RESUMO

In the present study, we explore the time-dependent convectional flow of a rheological nanofluid over a turning cone with the consolidated impacts of warmth and mass exchange. It has been shown that if the angular velocity at the free stream and the cone's angular velocity differ inversely as a linear time function, a self-similar solution can be obtained. By applying sufficient approximation to the boundary layer, the managed conditions of movement, temperature, and nanoparticles are improved; afterward, the framework is changed to a non-dimensional framework utilizing proper comparability changes. A numerical solution for the obtained system of governing equations is achieved. The effect of different parameters on the velocity, temperature, and concentration profiles are discussed. Tangential velocity is observed to decrease with an increase in the Deborah number, whereas tangential velocity increases with increasing values of the angular velocity ratio, relaxation to the retardation time ratio, and buoyancy parameter. Expansion in the Prandtl number is noted to decrease the boundary layer temperature and thickness. The temperature is seen to decrease with an expansion in the parameters of lightness, thermophoresis parameter, and Brownian movement. It is discovered that the Nusselt number expands by expanding the lightness parameter and Prandtl number, whereas it increases by decreasing the Deborah number. We also noticed that the Sherwood number falls incrementally in Deborah and Prandtl numbers, but it upsurges with an increase in the buoyancy parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...