Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 37(11): 2436-41, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12831029

RESUMO

Conditional distribution coefficients (K(DOM')) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that K(DOM') values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (10(22.5 +/-1.0)-10(23.5 +/- 1.0)) L kg(-1)), suggesting similar Hg(ll) binding environments, presumably involving thiol groups, for the different isolates. K(DOM') values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pK(a) = 10.3) and one other group (pK(a) = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).


Assuntos
Substâncias Húmicas/química , Mercúrio/química , Modelos Químicos , Monitoramento Ambiental , Concentração de Íons de Hidrogênio , Poluentes da Água/análise
2.
Environ Sci Technol ; 36(19): 4058-64, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12380075

RESUMO

The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10(-7.4) to 10(-3.7) M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 10(21.8 +/- 0.1) and 10(22.0 +/- 0.1) M-1), but less than those determined for the DOM strong sites (Kdom,s = 10(22.8 +/- 0.1) and 10(23.2 +/- 0.1) M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 10(11.5 +/- 0.1) and 10(11.8 +/- 0.1) M-1) and weak DOM sites (Kdom,w = 10(8.7 +/- 3.0) and 10(7.3 +/- 4.5) M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.


Assuntos
Mercúrio/química , Poluentes do Solo/análise , Adsorção , Monitoramento Ambiental , Florida , Compostos Orgânicos , Solo , Solubilidade
3.
Environ Sci Technol ; 36(16): 3564-70, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12214650

RESUMO

The binding of Hg(II) to dissolved organic matter (DOM; hydrophobic acids isolated from the Florida Everglades by XAD-8 resin) was measured at a wide range of Hg-to-DOM concentration ratios using an equilibrium dialysis ligand exchange method. Conditional distribution coefficients (K(DOM)') determined by this method were strongly affected by the Hg/DOM concentration ratio. At Hg/DOM ratios below approximately 1 microg of Hg/mg of DOM, we observed very strong interactions (K(DOM)' = 10(23.2+/-1.0) L kg(-1) at pH = 7.0 and I = 0.1), indicative of mercury-thiol bonds. Hg/DOM ratios above approximately 10 microg of Hg/mg of DOM, as used in most studies that have determined Hg-DOM binding constants, gave much lower K(DOM)' values (10(10.7+/-1.0) L kg(-1) at pH = 4.9-5.6 and I = 0.1), consistent with Hg binding mainly to oxygen functional groups. These results suggest that the binding of Hg to DOM under natural conditions (very low Hg/DOM ratios) is controlled by a small fraction of DOM molecules containing a reactive thiol functional group. Therefore, Hg/DOM distribution coefficients used for modeling the biogeochemical behavior of Hg in natural systems need to be determined at low Hg/DOM ratios.


Assuntos
Mercúrio/química , Modelos Químicos , Poluentes da Água/análise , Cinética , Compostos Orgânicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA