Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1343588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515445

RESUMO

Background: Alzheimer's Disease (AD) is a multifactorial, progressive neurodegenerative disease that disrupts synaptic and neuronal activity and network oscillations. It is characterized by neuronal loss, brain atrophy and a decline in cognitive and functional abilities. Cognito's Evoked Gamma Therapy System provides an innovative approach for AD by inducing EEG-verified gamma oscillations through sensory stimulation. Prior research has shown promising disease-modifying effects in experimental AD models. The present study (NCT03556280: OVERTURE) evaluated the feasibly, safety and efficacy of evoked gamma oscillation treatment using Cognito's medical device (CogTx-001) in participants with mild to moderate AD. Methods: The present study was a randomized, double blind, sham-controlled, 6-months clinical trial in participants with mild to moderate AD. The trial enrolled 76 participants, aged 50 or older, who met the clinical criteria for AD with baseline MMSE scores between 14 and 26. Participants were randomly assigned 2:1 to receive self-administered daily, one-hour, therapy, evoking EEG-verified gamma oscillations or sham treatment. The CogTx-001 device was use at home with the help of a care partner, over 6 months. The primary outcome measures were safety, evaluated by physical and neurological exams and monthly assessments of adverse events (AEs) and MRI, and tolerability, measured by device use. Although the trial was not statistically powered to evaluate potential efficacy outcomes, primary and secondary clinical outcome measures included several cognitive and functional endpoints. Results: Total AEs were similar between groups, there were no unexpected serious treatment related AEs, and no serious treatment-emergent AEs that led to study discontinuation. MRI did not show Amyloid-Related Imaging Abnormalities (ARIA) in any study participant. High adherence rates (85-90%) were observed in sham and treatment participants. There was no statistical separation between active and sham arm participants in primary outcome measure of MADCOMS or secondary outcome measure of CDR-SB or ADAS-Cog14. However, some secondary outcome measures including ADCS-ADL, MMSE, and MRI whole brain volume demonstrated reduced progression in active compared to sham treated participants, that achieved nominal significance. Conclusion: Our results demonstrate that 1-h daily treatment with Cognito's Evoked Gamma Therapy System (CogTx-001) was safe and well-tolerated and demonstrated potential clinical benefits in mild to moderate AD.Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT03556280.

2.
J Alzheimers Dis ; 97(1): 359-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38073386

RESUMO

BACKGROUND: Patients with Alzheimer's disease (AD) demonstrate progressive white matter atrophy and myelin loss. Restoring myelin content or preventing demyelination has been suggested as a therapeutic approach for AD. OBJECTIVE: Herein, we investigate the effects of non-invasive, combined visual and auditory gamma-sensory stimulation on white matter atrophy and myelin content loss in patients with AD. METHODS: In this study, we used the magnetic resonance imaging (MRI) data from the OVERTURE study (NCT03556280), a randomized, controlled, clinical trial in which active treatment participants received daily, non-invasive, combined visual and auditory, 40 Hz stimulation for six months. A subset of OVERTURE participants who meet the inclusion criteria for detailed white matter (N = 38) and myelin content (N = 36) assessments are included in the analysis. White matter volume assessments were performed using T1-weighted MRI, and myelin content assessments were performed using T1-weighted/T2-weighted MRI. Treatment effects on white matter atrophy and myelin content loss were assessed. RESULTS: Combined visual and auditory gamma-sensory stimulation treatment is associated with reduced total and regional white matter atrophy and myelin content loss in active treatment participants compared to sham treatment participants. Across white matter structures evaluated, the most significant changes were observed in the entorhinal region. CONCLUSIONS: The study results suggest that combined visual and auditory gamma-sensory stimulation may modulate neuronal network function in AD in part by reducing white matter atrophy and myelin content loss. Furthermore, the entorhinal region MRI outcomes may have significant implications for early disease intervention, considering the crucial afferent connections to the hippocampus and entorhinal cortex.


Assuntos
Doença de Alzheimer , Substância Branca , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Substância Branca/patologia , Bainha de Mielina/patologia , Imageamento por Ressonância Magnética , Atrofia/patologia
3.
Bioorg Med Chem Lett ; 93: 129433, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557923

RESUMO

The α7 nicotinic acetylcholine receptor is a calcium permeable, ligand-gated ion channel that modulates synaptic transmission in the hippocampus, thalamus, and cerebral cortex. Previously disclosed work described PNU-120596 that acts as a powerful positive allosteric modulator of the α7 nicotinic acetylcholine receptor. The initial structure-activity relationships around PNU-120596 were gleaned from screening a large thiazole library. Independent systematic examination of the aryl and heteroaryl groups resulted in compounds with enhanced potency and improved physico-chemical properties culminating in the identification of 16 (PHA-758454). In the presence of acetylcholine, 16 enhanced evoked currents in rat hippocampal neurons. In a rat model of impaired sensory gating, treatment with 16 led to a reversal of the gating deficit in a dose-dependent manner. These results demonstrate that aryl heteroaryl ureas, like compound 16, may be useful tools for continued exploration of the unique biology of the α7 nicotinic acetylcholine receptor.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Animais , Hipocampo , Compostos de Fenilureia/química , Isoxazóis/farmacologia , Isoxazóis/química , Regulação Alostérica
4.
Int J Psychophysiol ; 177: 179-201, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35588964

RESUMO

Alzheimer's disease dementia (ADD) is the most diffuse neurodegenerative disorder belonging to mild cognitive impairment (MCI) and dementia in old persons. This disease is provoked by an abnormal accumulation of amyloid-beta and tauopathy proteins in the brain. Very recently, the first disease-modifying drug has been licensed with reserve (i.e., Aducanumab). Therefore, there is a need to identify and use biomarkers probing the neurophysiological underpinnings of human cognitive functions to test the clinical efficacy of that drug. In this regard, event-related electroencephalographic potentials (ERPs) and oscillations (EROs) are promising candidates. Here, an Expert Panel from the Electrophysiology Professional Interest Area of the Alzheimer's Association and Global Brain Consortium reviewed the field literature on the effects of the most used symptomatic drug against ADD (i.e., Acetylcholinesterase inhibitors) on ERPs and EROs in ADD patients with MCI and dementia at the group level. The most convincing results were found in ADD patients. In those patients, Acetylcholinesterase inhibitors partially normalized ERP P300 peak latency and amplitude in oddball paradigms using visual stimuli. In these same paradigms, those drugs partially normalize ERO phase-locking at the theta band (4-7 Hz) and spectral coherence between electrode pairs at the gamma (around 40 Hz) band. These results are of great interest and may motivate multicentric, double-blind, randomized, and placebo-controlled clinical trials in MCI and ADD patients for final cross-validation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase , Eletroencefalografia , Potenciais Evocados/fisiologia , Humanos
5.
J Alzheimers Dis ; 88(3): 849-865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34092642

RESUMO

Recent evidence suggests that about 30%of patients with mild to moderate Alzheimer's disease (AD) without a known diagnosis of epilepsy may display epileptiform spikes during electroencephalographic (EEG) recordings. These abnormal discharges occur predominantly during sleep and may be associated with accelerated disease progression. Subclinical spikes may represent a relevant target for clinical drug interventions, and there is a clear unmet need for preclinical testing of novel disease modifying agents in suitable animal models. Transgenic rodent models of AD pathology exhibit various forms of epileptiform EEG activity related to the abnormal levels of amyloid species in the brain. Among them, large-amplitude cortical and hippocampal EEG spikes in mouse and rat AD models may be reminiscent of the subclinical epileptiform EEG spikes recorded in some AD patients. This article reports the recommendations of a multidisciplinary panel of experts on optimal EEG markers and experimental designs to measure and report epileptiform activities and their response to symptomatic and disease-modifying drugs in transgenic AD model rodents. These recommendations may harmonize future preclinical EEG studies in the drug discovery research and may increase the comparability of experimental outcomes and their translational clinical value.


Assuntos
Doença de Alzheimer , Epilepsia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Eletroencefalografia , Epilepsia/genética , Camundongos , Ratos , Roedores
6.
J Alzheimers Dis ; 88(3): 837-847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34120899

RESUMO

BACKGROUND: Genetic mutations in triggering receptor expressed on myeloid cells-2 (TREM2) have been strongly associated with increased risk of developing Alzheimer's disease (AD) and other progressive dementias. In the brain, TREM2 protein is specifically expressed on microglia suggesting their active involvement in driving disease pathology. Using various transgenic AD models to interfere with microglial function through TREM2, several recent studies provided important data indicating a causal link between TREM2 and underlying amyloid-ß (Aß) and tau pathology. However, mechanisms by which TREM2 contributes to increased predisposition to clinical AD and influences its progression still remain largely unknown. OBJECTIVE: Our aim was to elucidate the potential contribution of TREM2 on specific oscillatory dynamic changes associated with AD pathophysiology. METHODS: Spontaneous and brainstem nucleus pontis oralis stimulation-induced hippocampal oscillation paradigm was used to investigate the impact of TREM2 haploinsufficiency TREM2(Het) or total deficiency TREM2(Hom) on hippocampal network function in wild-type and Aß overproducing Tg2576 mice under urethane anesthesia. RESULTS: Partial (TREM2(Het)) or total (TREM2(Hom)) deletion of TREM2 led to increased incidence of spontaneous epileptiform seizures in both wild-type and Tg2576 mice. Importantly, deficiency of TREM2 in Tg2576 mice significantly diminished power of theta oscillation in the hippocampus elicited by brainstem-stimulation compared to wild-type mice. However, it did not affect hippocampal theta-phase gamma-amplitude coupling significantly, since over a 60%reduction was found in coupling in Tg2576 mice regardless of TREM2 function. CONCLUSION: Our findings indicate a role for TREM2-dependent microglial function in the hippocampal neuronal excitability in both wild type and Aß overproducing mice, whereas deficiency in TREM2 function exacerbates disruptive effects of Aß on hippocampal network oscillations.


Assuntos
Doença de Alzheimer , Epilepsia , Glicoproteínas de Membrana , Receptores Imunológicos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/complicações , Hipocampo/fisiopatologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
7.
Front Syst Neurosci ; 15: 746859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630050

RESUMO

Pathological proteins contributing to Alzheimer's disease (AD) are known to disrupt normal neuronal functions in the brain, leading to unbalanced neuronal excitatory-inhibitory tone, distorted neuronal synchrony, and network oscillations. However, it has been proposed that abnormalities in neuronal activity directly contribute to the pathogenesis of the disease, and in fact it has been demonstrated that induction of synchronized 40 Hz gamma oscillation of neuronal networks by sensory stimulation reverses AD-related pathological markers in transgenic mice carrying AD-related human pathological genes. Based on these findings, the current study evaluated whether non-invasive sensory stimulation inducing cortical 40 Hz gamma oscillation is clinically beneficial for AD patients. Patients with mild to moderate AD (n = 22) were randomized to active treatment group (n = 14; gamma sensory stimulation therapy) or to sham group (n = 8). Participants in the active treatment group received precisely timed, 40 Hz visual and auditory stimulations during eye-closed condition to induce cortical 40 Hz steady-state oscillations in 1-h daily sessions over a 6-month period. Participants in the sham group were exposed to similar sensory stimulation designed to not evoke cortical 40 Hz steady-state oscillations that are observed in the active treatment patients. During the trial, nighttime activities of the patients were monitored with continuous actigraphy recordings, and their functional abilities were measured by Alzheimer's Disease Cooperative Study - Activities of Daily Living (ADCS-ADL) scale. Results of this study demonstrated that 1-h daily therapy was well tolerated throughout the 6-month treatment period by all subjects. Patients receiving gamma sensory stimulation showed significantly reduced nighttime active periods, in contrast, to deterioration in sleep quality in sham group patients. Patients in the sham group also showed the expected, significant decline in ADCS-ADL scores, whereas patients in the gamma sensory stimulation group fully maintained their functional abilities over the 6-month period. These findings confirm the safe application of 40 Hz sensory stimulation in AD patients and demonstrate a high adherence to daily treatment. Furthermore, this is the first time that beneficial clinical effects of the therapy are reported, justifying expanded and longer trials to explore additional clinical benefits and disease-modifying properties of gamma sensory stimulation therapy. Clinical Trial Registration: clinicaltrials.gov, identifier: NCT03556280.

8.
Ageing Res Rev ; 68: 101318, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33711510

RESUMO

The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Biomarcadores , Encéfalo/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Humanos , Neuroimagem
9.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526652

RESUMO

Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.


Assuntos
Degeneração Neural/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Sinapses/metabolismo , Receptor de TWEAK/metabolismo , Animais , Citocina TWEAK/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/fisiopatologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Transmissão Sináptica/fisiologia
10.
Mol Pharmacol ; 99(1): 49-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298520

RESUMO

Voltage-gated sodium channels (Navs) are promising targets for analgesic and antiepileptic therapies. Although specificity between Nav subtypes may be desirable to target specific neural types, such as nociceptors in pain, many broadly acting Nav inhibitors are clinically beneficial in neuropathic pain and epilepsy. Here, we present the first systematic characterization of vixotrigine, a Nav blocker. Using recombinant systems, we find that vixotrigine potency is enhanced in a voltage- and use-dependent manner, consistent with a state-dependent block of Navs. Furthermore, we find that vixotrigine potently inhibits sodium currents produced by both peripheral and central nervous system Nav subtypes, with use-dependent IC50 values between 1.76 and 5.12 µM. Compared with carbamazepine, vixotrigine shows higher potency and more profound state-dependent inhibition but a similar broad spectrum of action distinct from Nav1.7- and Nav1.8-specific blockers. We find that vixotrigine rapidly inhibits Navs and prolongs recovery from the fast-inactivated state. In native rodent dorsal root ganglion sodium channels, we find that vixotrigine shifts steady-state inactivation curves. Based on these results, we conclude that vixotrigine is a broad-spectrum, state-dependent Nav blocker. SIGNIFICANCE STATEMENT: Vixotrigine blocks both peripheral and central voltage-gated sodium channel subtypes. Neurophysiological approaches in recombinant systems and sensory neurons suggest this block is state-dependent.


Assuntos
Éteres Fenílicos/metabolismo , Éteres Fenílicos/farmacologia , Prolina/análogos & derivados , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Masculino , Éteres Fenílicos/química , Prolina/química , Prolina/metabolismo , Prolina/farmacologia , Ratos , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Canais de Sódio Disparados por Voltagem/química
11.
Front Pharmacol ; 11: 1005, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733245

RESUMO

Selective activation of dopamine D1 receptors remains a promising pro-cognitive therapeutic strategy awaiting robust clinical investigation. PF-6142 is a key example from a recently disclosed novel series of non-catechol agonists and partial agonists of the dopamine D1/5 receptors (D1R) that exhibit pharmacokinetic (PK) properties suitable for oral delivery. Given their reported potential for functionally biased signaling compared to known catechol-based selective agonists, and the promising rodent PK profile of PF-6142, we utilized relevant in vivo assays in male rodents and male and female non-human primates (NHP) to evaluate the pharmacology of this new series. Studies in rodents showed that PF-6142 increased locomotor activity and prefrontal cortex acetylcholine release, increased time spent in wakefulness, and desynchronized the EEG, like known D1R agonists. D1R selectivity of PF-6142 was supported by lack of effect in D1R knock-out mice and blocked response in the presence of the D1R antagonist SCH-23390. Further, PF-6142 improved performance in rodent models of NMDA receptor antagonist-induced cognitive dysfunction, such as MK-801-disrupted paired-pulse facilitation, and ketamine-disrupted working memory performance in the radial arm maze. Similarly, PF-6142 reversed ketamine-induced deficits in NHP performing the spatial delayed recognition task. Of importance, PF-6142 did not alter the efficacy of risperidone in assays predictive of antipsychotic-like effect in rodents including pre-pulse inhibition and conditioned avoidance responding. These data support the continued development of non-catechol based D1R agonists for the treatment of cognitive impairment associated with brain disorders including schizophrenia.

12.
J Clin Invest ; 130(9): 4985-4998, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516139

RESUMO

The brain has evolved in an environment where food sources are scarce, and foraging for food is one of the major challenges for survival of the individual and species. Basic and clinical studies show that obesity or overnutrition leads to overwhelming changes in the brain in animals and humans. However, the exact mechanisms underlying the consequences of excessive energy intake are not well understood. Neurons expressing the neuropeptide hypocretin/orexin (Hcrt) in the lateral/perifonical hypothalamus (LH) are critical for homeostatic regulation, reward seeking, stress response, and cognitive functions. In this study, we examined adaptations in Hcrt cells regulating behavioral responses to salient stimuli in diet-induced obese mice. Our results demonstrated changes in primary cilia, synaptic transmission and plasticity, cellular responses to neurotransmitters necessary for reward seeking, and stress responses in Hcrt neurons from obese mice. Activities of neuronal networks in the LH and hippocampus were impaired as a result of decreased hypocretinergic function. The weakened Hcrt system decreased reward seeking while altering responses to acute stress (stress-coping strategy), which were reversed by selectively activating Hcrt cells with chemogenetics. Taken together, our data suggest that a deficiency in Hcrt signaling may be a common cause of behavioral changes (such as lowered arousal, weakened reward seeking, and altered stress response) in obese animals.


Assuntos
Comportamento Alimentar , Hipotálamo , Rede Nervosa , Neurônios , Obesidade , Orexinas , Animais , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Orexinas/genética , Orexinas/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
13.
Neurobiol Aging ; 85: 58-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739167

RESUMO

Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer's disease (AD), despite a surge in recent validated evidence. This position paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity, reflecting thalamocortical and corticocortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Eletrofisiologia/métodos , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Descoberta de Drogas , Eletroencefalografia , Potenciais Evocados , Humanos , Magnetoencefalografia
14.
Alzheimers Res Ther ; 11(1): 88, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31639062

RESUMO

BACKGROUND: Loss-of-function mutations in the progranulin gene cause frontotemporal dementia, a genetic, heterogeneous neurodegenerative disorder. Progranulin deficiency leads to extensive neuronal loss in the frontal and temporal lobes, altered synaptic connectivity, and behavioral alterations. METHODS: The chronological emergence of neurophysiological and behavioral phenotypes of Grn heterozygous and homozygous mice in the dorsomedial thalamic-medial prefrontal cortical pathway were evaluated by in vivo electrophysiology and reward-seeking/processing behavior, tested between ages 3 and 12.5 months. RESULTS: Electrophysiological recordings identified a clear age-dependent deficit in the thalamocortical circuit. Both heterozygous and homozygous mice exhibited impaired input-output relationships and paired-pulse depression, but evoked response latencies were only prolonged in heterozygotes. Furthermore, we demonstrate firstly an abnormal reward-seeking/processing behavior in the homozygous mice which correlates with previously reported neuroinflammation. CONCLUSION: Our findings indicate that murine progranulin deficiency causes age-dependent neurophysiological and behavioral abnormalities thereby indicating their validity in modeling aspects of human frontotemporal dementia.


Assuntos
Comportamento Animal/fisiologia , Demência Frontotemporal/genética , Progranulinas/genética , Fatores Etários , Animais , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Progranulinas/metabolismo , Recompensa
15.
Mol Cell Neurosci ; 99: 103393, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31356882

RESUMO

Enhancing remyelination is a key therapeutic strategy for demyelinating diseases such as multiple sclerosis. To achieve this goal, a central challenge is being able to quantitatively and longitudinally track functional remyelination, especially with translatable biomarkers that can be performed in both preclinical models and in the clinic. We developed the methodology to stably measure multi-modal sensory evoked potentials from the skull surface over the course of months in individual mice and applied it to a genetic mouse model of oligodendrocyte ablation and demyelination. We found that auditory and somatosensory evoked potential latencies reliably increased over time during the early phase of the model and recovered spontaneously and almost completely during a later phase. Histological examination supported the interpretation that the evoked potential latency changes dynamically reflect changes in CNS myelination. Specifically, we found reduction of myelination in corresponding brain regions at the time that sensory evoked potentials were maximally impacted. Importantly, we also found that myelination levels recovered when evoked potential latencies recovered. Other changes known to associate with demyelination were also observed at the time of delayed evoked potentials, including the emergence of white matter vacuoles and increased markers for activated microglia and macrophages; these changes also fully reversed by the time that evoked potentials recovered. Our results support the hypothesis that skull-surface recorded evoked potential latencies can dynamically track CNS myelination changes. The methods developed here allow for longitudinally tracking functional myelination changes in vivo in preclinical rodent models with a quantitative biomarker that can also be applied clinically and will facilitate translational development of CNS remyelinating therapies.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Potenciais Evocados Auditivos , Potenciais Somatossensoriais Evocados , Animais , Eletroencefalografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia
16.
Cereb Cortex ; 29(6): 2716-2727, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920597

RESUMO

Current findings suggest that accumulation of amyloid-ß (Aß) and hyperphosphorylated tau in the brain disrupt synaptic function in hippocampal-cortical neuronal networks leading to impairment in cognitive and affective functions in Alzheimer's disease (AD). Development of new disease-modifying AD drugs are challenging due to the lack of predictive animal models and efficacy assays. In the present study we recorded neural activity in TgF344-AD rats, a transgenic model with a full array of AD pathological features, including age-dependent Aß accumulation, tauopathy, neuronal loss, and cognitive impairments. Under urethane anesthesia, TgF344-AD rats showed significant age-dependent decline in brainstem-elicited hippocampal theta oscillation and decreased theta-phase gamma-amplitude coupling comparing to their age-matched wild-type counterparts. In freely-behaving condition, the power of hippocampal theta oscillation and gamma power during sharp-wave ripples were significantly lower in TgF344-AD rats. Additionally, these rats showed impaired coherence in both intercortical and hippocampal-cortical network dynamics, and increased incidence of paroxysmal high-voltage spindles, which occur during awake, behaviorally quiescent state. TgF344-AD rats demonstrated impairments in sensory processing, having diminished auditory gating and 40-Hz auditory evoked steady-state response. The observed differences in neurophysiological activities in TgF344-AD rats, which mirror several abnormalities described in AD patients, may be used as promising markers to monitor disease-modifying therapies.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Animais , Potenciais Evocados Auditivos/fisiologia , Feminino , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
17.
Alzheimers Res Ther ; 10(1): 105, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30301466

RESUMO

BACKGROUND: Translational research in Alzheimer's disease (AD) pathology provides evidence that accumulation of amyloid-ß and hyperphosphorylated tau, neuropathological hallmarks of AD, is associated with complex disturbances in synaptic and neuronal function leading to oscillatory abnormalities in the neuronal networks that support memory and cognition. Accordingly, our recent study on transgenic TgF344-AD rats modeling AD showed an age-dependent reduction of stimulation-induced oscillations in the hippocampus, and disrupted long-range connectivity together with enhanced neuronal excitability in the cortex, reflected in greatly increased expression of high-voltage spindles, an epileptic absence seizure-like activity. To better understand the translational value of observed oscillatory abnormalities in these rats, we examine here the effects of donepezil, an acetylcholine esterase inhibitor clinically approved for AD treatment. METHODS: Brainstem nucleus pontis oralis stimulation-induced hippocampal oscillations were recorded under urethane anesthesia in adult (6-month-old) and aged (12-month-old) TgF344-AD and wild-type rats. Spontaneous cortical activity was monitored in a cohort of freely behaving aged rats implanted with frontal and occipital cortical electroencephalography (EEG) electrodes. RESULTS: Subcutaneous administration of donepezil significantly augmented stimulation-induced hippocampal theta oscillation in aged wild-type rats and both adult and aged TgF344-AD rats, which have been previously shown to have diminished response to nucleus pontis oralis stimulation. Moreover, in adult TgF344-AD rats, donepezil also significantly increased theta phase-gamma amplitude coupling in the hippocampus during stimulation. However, neither of these effects were significantly changed in adult wild-type rats. Under freely behaving conditions, donepezil treatment had the opposite effect on cortical oscillatory connectivity in TgF344-AD and wild-type rats, and it reduced the occurrence of high-voltage spindle activity in TgF344-AD rats. CONCLUSIONS: Together, these results imply that pharmacologically enhancing cholinergic tone with donepezil could partially reverse oscillatory abnormalities in TgF344-AD rats, which is in line with its clinical effectiveness in AD patients. Therefore, our study suggests good translational opportunities for these neurophysiological signals recorded in TgF344-AD rats, and their application could be considered in drug discovery efforts for developing therapies with disease-modifying potential.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Inibidores da Colinesterase/administração & dosagem , Donepezila/administração & dosagem , Doença de Alzheimer/tratamento farmacológico , Animais , Biomarcadores , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Lobo Occipital/efeitos dos fármacos , Lobo Occipital/fisiopatologia , Ratos Endogâmicos F344 , Ratos Transgênicos
18.
Neuropharmacology ; 135: 412-423, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29604295

RESUMO

Cannabis use has been associated with altered sensory gating and neural oscillations. However, it is unclear which constituent in cannabis is responsible for these effects, or whether these are cannabinoid receptor 1 (CB1R) mediated. Therefore, the present study in humans and rats examined whether cannabinoid administration would disrupt sensory gating and evoked oscillations utilizing electroencephalography (EEG) and local field potentials (LFPs), respectively. Human subjects (n = 15) completed four test days during which they received intravenous delta-9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-THC + CBD, or placebo. Subjects engaged in a dual-click paradigm, and outcome measures included P50 gating ratio (S2/S1) and evoked power to S1 and S2. In order to examine CB1R specificity, rats (n = 6) were administered the CB1R agonist CP-55940, CP-55940+AM-251 (a CB1R antagonist), or vehicle using the same paradigm. LFPs were recorded from CA3 and entorhinal cortex. Both Δ9-THC (p < 0.007) and Δ9-THC + CBD (p < 0.004) disrupted P50 gating ratio compared to placebo, while CBD alone had no effect. Δ9-THC (p < 0.048) and Δ9-THC + CBD (p < 0.035) decreased S1 evoked theta power, and in the Δ9-THC condition, S1 theta negatively correlated with gating ratios (r = -0.629, p < 0.012 (p < 0.048 adjusted)). In rats, CP-55940 disrupted gating in both brain regions (p < 0.0001), and this was reversed by AM-251. Further, CP-55940 decreased evoked theta (p < 0.0077) and gamma (p < 0.011) power to S1, which was partially blocked by AM-251. These convergent human/animal data suggest that CB1R agonists disrupt sensory gating by altering neural oscillations in the theta-band. Moreover, this suggests that the endocannabinoid system mediates theta oscillations relevant to perception and cognition.


Assuntos
Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Moduladores de Receptores de Canabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Filtro Sensorial/efeitos dos fármacos , Adulto , Animais , Encéfalo/fisiologia , Ondas Encefálicas/fisiologia , Cicloexanóis/farmacologia , Método Duplo-Cego , Dronabinol/farmacologia , Feminino , Humanos , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Filtro Sensorial/fisiologia , Pesquisa Translacional Biomédica
20.
J Med Chem ; 61(3): 1001-1018, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29293004

RESUMO

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (PDE2A) inhibitor 1 with an imidazotriazine core to yield compounds of significantly enhanced potency. The analog PF-05180999 (30) was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia. Compound 30 demonstrated potent binding to PDE2A in brain tissue, dose responsive mouse brain cGMP increases, and reversal of N-methyl-d-aspartate (NMDA) antagonist-induced (MK-801, ketamine) effects in electrophysiology and working memory models in rats. Preclinical pharmacokinetics revealed unbound brain/unbound plasma levels approaching unity and good oral bioavailability resulting in an average concentration at steady state (Cav,ss) predicted human dose of 30 mg once daily (q.d.). Modeling of a modified release formulation suggested that 25 mg twice daily (b.i.d.) could maintain plasma levels of 30 at or above targeted efficacious plasma levels for 24 h, which became part of the human clinical plan.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Disponibilidade Biológica , Encéfalo/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Concentração Inibidora 50 , Memória de Curto Prazo/efeitos dos fármacos , Simulação de Acoplamento Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...