Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 18(5): 1507-1525, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28247293

RESUMO

Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Compostos Inorgânicos , Estruturas Metalorgânicas , Humanos , Compostos Inorgânicos/química , Compostos Inorgânicos/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Nanopartículas , Porosidade
2.
Curr Pharm Des ; 22(19): 2873-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26898734

RESUMO

The development of therapeutic dosage (e.g. pharmaceutical) systems is an ongoing process which, in recent times has incorporated several emerging disciplines and themes at timely intervals. While the concepts surrounding dosage forms have developed and evolved, many polymeric excipients remain as the preferred choice of materials over existing counterparts, serving functions as matrix materials, coatings and providing other specific functional properties (e.g. adhesion, controlled release and mechanical properties). There have been, however, developments in the deployment of synthetic polymeric materials (e.g. polycaprolactone, poly lactic co-glycolic acid) when compared to naturally occurring materials (e.g. lactose, gelatin). Advances in pharmaceutical process technologies have also provided novel engineering platforms to develop a host of exciting structure based materials ranging from the nanometer to the macro scales. Some of these structure enabling technologies include spray drying, super critical processing, microfluidics and even wet chemical methods. More recently electrohydrodynamic (EHDA) engineering methods have emerged as robust technologies offering potential to fabricate a plethora of generic structures (e.g. particles, fibres, bubbles and pre-determined patterns) on a broad scale range. This review focuses on key developments using various EHDA technologies for the pharmaceutical and biomaterial remits when selecting synthetic and/or naturally occurring polymers as pharmaceutical (and therapeutic) excipients. In addition, the underlying EHDA process principles are discussed along with key parameters and variables (both materials and engineering). EHDA technologies are operational at ambient conditions and recent developments have also demonstrated their viability for large scale production. These are promising technologies which have potential in established (e.g. films, dressings and microparticles) and emerging scientific themes (e.g. nanomedicines and tissue engineering).


Assuntos
Sistemas de Liberação de Medicamentos , Hidrodinâmica , Polímeros/química , Portadores de Fármacos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA