Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Dis Model Mech ; 5(1): 33-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22107871

RESUMO

The post-genomic era is marked by a pressing need to functionally characterize genes through understanding gene-gene interactions, as well as interactions between biological pathways. Exploiting a phenomenon known as synthetic lethality, in which simultaneous loss of two interacting genes leads to loss of viability, aids in the investigation of these interactions. Although synthetic lethal screening is a powerful technique that has been used with great success in many model organisms, including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, this approach has not yet been applied in the zebrafish, Danio rerio. Recently, the zebrafish has emerged as a valuable system to model many human disease conditions; thus, the ability to conduct synthetic lethal screening using zebrafish should help to uncover many unknown disease-gene interactions. In this article, we discuss the concept of synthetic lethality and provide examples of its use in other model systems. We further discuss experimental approaches by which the concept of synthetic lethality can be applied to the zebrafish to understand the functions of specific genes.


Assuntos
Doença/genética , Peixe-Zebra/genética , Animais , Modelos Animais de Doenças , Modelos Biológicos
2.
Mol Biol Cell ; 21(5): 712-24, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053678

RESUMO

Oxygen, an essential nutrient, is sensed by a multiple of cellular pathways that facilitate the responses to and survival of oxygen deprivation. The Caenorhabditis elegans embryo exposed to severe oxygen deprivation (anoxia) enters a state of suspended animation in which cell cycle progression reversibly arrests at specific stages. The mechanisms regulating interphase, prophase, or metaphase arrest in response to anoxia are not completely understood. Characteristics of arrested prophase blastomeres and oocytes are the alignment of condensed chromosomes at the nuclear periphery and an arrest of nuclear envelope breakdown. Notably, anoxia-induced prophase arrest is suppressed in mutant embryos lacking nucleoporin NPP-16/NUP50 function, indicating that this nucleoporin plays an important role in prophase arrest in wild-type embryos. Although the inactive form of cyclin-dependent kinase (CDK-1) is detected in wild-type-arrested prophase blastomeres, the inactive state is not detected in the anoxia exposed npp-16 mutant. Furthermore, we found that CDK-1 localizes near chromosomes in anoxia-exposed embryos. These data support the notion that NPP-16 and CDK-1 function to arrest prophase blastomeres in C. elegans embryos. The anoxia-induced shift of cells from an actively dividing state to an arrested state reveals a previously uncharacterized prophase checkpoint in the C. elegans embryo.


Assuntos
Blastocisto/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/fisiologia , Prófase , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Regulação da Expressão Gênica , Hipóxia , Mutação , Nocodazol/farmacologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Oócitos/metabolismo , Interferência de RNA
3.
Cell Div ; 3: 6, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-18248670

RESUMO

BACKGROUND: The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi) to identify genes synthetic lethal with the viable san-1(ok1580) deletion mutant. RESULTS: The san-1(ok1580) animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580) embryos is significantly reduced when HCP-1 (CENP-F homologue), MDF-1 (MAD-1 homologue), MDF-2 (MAD-2 homologue) or BUB-3 (predicted BUB-3 homologue) are reduced by RNAi. Interestingly, the viability of san-1(ok1580) embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580);hcp-1(RNAi) embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging). Several of the san-1(ok1580);hcp-1(RNAi) animals displayed abnormal kinetochore (detected by MPM-2) and microtubule structure. The survival of mdf-2(RNAi);hcp-1(RNAi) embryos but not bub-3(RNAi);hcp-1(RNAi) embryos was also compromised. Finally, we found that san-1(ok1580) and bub-3(RNAi), but not hcp-1(RNAi) embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. CONCLUSION: Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580);hcp-1(RNAi) animals had a severe viability defect whereas in the san-1(ok1580);hcp-2(RNAi) and san-1(ok1580);hcp-2(ok1757) animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.

4.
BMC Cell Biol ; 6: 47, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16368008

RESUMO

BACKGROUND: The soil nematode C. elegans survives oxygen-deprived conditions (anoxia; <.001 kPa O2) by entering into a state of suspended animation in which cell cycle progression reversibly arrests. The majority of blastomeres of embryos exposed to anoxia arrest at interphase, prophase and metaphase. The spindle checkpoint proteins SAN-1 and MDF-2 are required for embryos to survive 24 hours of anoxia. To further investigate the mechanism of cell-cycle arrest we examined and compared sub-nuclear changes such as chromatin localization pattern, post-translational modification of histone H3, spindle microtubules, and localization of the spindle checkpoint protein SAN-1 with respect to various anoxia exposure time points. To ensure analysis of embryos exposed to anoxia and not post-anoxic recovery we fixed all embryos in an anoxia glove box chamber. RESULTS: Embryos exposed to brief periods to anoxia (30 minutes) contain prophase blastomeres with chromosomes in close proximity to the nuclear membrane, condensation of interphase chromatin and metaphase blastomeres with reduced spindle microtubules density. Embryos exposed to longer periods of anoxia (1-3 days) display several characteristics including interphase chromatin that is further condensed and in close proximity to the nuclear membrane, reduction in spindle structure perimeter and reduced localization of SAN-1 at the kinetochore. Additionally, we show that the spindle checkpoint protein SAN-1 is required for brief periods of anoxia-induced cell cycle arrest, thus demonstrating that this gene product is vital for early anoxia responses. In this report we suggest that the events that occur as an immediate response to brief periods of anoxia directs cell cycle arrest. CONCLUSION: From our results we conclude that the sub-nuclear characteristics of embryos exposed to anoxia depends upon exposure time as assayed using brief (30 minutes), intermediate (6 or 12 hours) or long-term (24 or 72 hours) exposures. Analyzing these changes will lead to an understanding of the mechanisms required for initiation and maintenance of cell cycle arrest in respect to anoxia exposure time as well as order the events that occur to bring about anoxia-induced cell cycle arrest.


Assuntos
Blastômeros/citologia , Caenorhabditis elegans/embriologia , Ciclo Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Hipóxia , Animais , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Histonas/metabolismo , Microscopia de Fluorescência , Fosforilação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...