Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Granul Comput ; 9(2): 40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585422

RESUMO

The ambiguous information in multi-criteria decision-making (MCDM) and the vagueness of decision-makers for qualitative judgments necessitate accurate tools to overcome uncertainties and generate reliable solutions. As one of the latest and most powerful MCDM methods for obtaining criteria weight, the best-worst method (BWM) has been developed. Compared to other MCDM methods, such as the analytic hierarchy process, the BWM requires fewer pairwise comparisons and produces more consistent results. Consequently, the main objective of this study is to develop an extension of BWM using spherical fuzzy sets (SFS) to address MCDM problems under uncertain conditions. Hesitancy, non-membership, and membership degrees are three-dimensional functions included in the SFS. The presence of three defined degrees allows decision-makers to express their judgments more accurately. An optimization model based on nonlinear constraints is used to determine optimal spherical fuzzy weight coefficients (SF-BWM). Additionally, a consistency ratio is proposed for the SF-BWM to assess the reliability of the proposed method in comparison to other versions of BWM. SF-BWM is examined using two numerical decision-making problems. The results show that the proposed method based on the SF-BWM provided the criteria weights with the same priority as the BWM and fuzzy BWM. However, there are differences in the criteria weight values based on the SF-BWM that indicate the accuracy and reliability of the obtained results. The main advantage of using SF-BWM is providing a better consistency ratio. Based on the comparative analysis, the consistency ratio obtained for SF-BWM is threefold better than the BWM and fuzzy BWM methods, which leads to more accurate results than BWM and fuzzy BWM.

2.
Chemosphere ; 335: 139134, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37295683

RESUMO

The difficulty of developing pollutants in aquatic ecosystems and their potential effects on animals and plants have been raised. Sewage effluent can seriously harm a river's plant and animal life by reducing the water's oxygen content. Due to their increasing use and poor elimination in traditional municipal wastewater treatment plants (WWTPs), pharmaceuticals are one of the developing pollutants that have the potential to penetrate aquatic ecosystems. Due to undigested pharmaceuticals and their metabolites, which constitute a significant class of potentially hazardous aquatic pollutants. Using an algae-based membrane bioreactor (AMBR), the primary objective of this research was to eliminate emerging contaminants (ECs) identified in municipal wastewater. The first part of this research covers the basics of growing algae, an explanation of how they work, and how they remove ECs. Second, it develops the membrane in the wastewater, explains its workings, and uses the membrane to remove ECs. Finally, an algae-based membrane bioreactor for removing ECs is examined. As a result, daily algal production using AMBR technology might range from 50 to 100 mg/Liter. These kinds of machines are capable of nitrogen and phosphorus removal efficiencies of 30-97% and 46-93%, respectively.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ecossistema , Esgotos , Poluentes Químicos da Água/análise , Reatores Biológicos , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos
3.
Expert Syst Appl ; 227: 120334, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192999

RESUMO

Effective supply chain management is crucial for economic growth, and sustainability is becoming a key consideration for large companies. COVID-19 has presented significant challenges to supply chains, making PCR testing a vital product during the pandemic. It detects the presence of the virus if you are infected at the time and detects fragments of the virus even after you are no longer infected. This paper proposes a multi-objective mathematical linear model to optimize a sustainable, resilient, and responsive supply chain for PCR diagnostic tests. The model aims to minimize costs, negative societal impact caused by shortages, and environmental impact, using a scenario-based approach with stochastic programming. The model is validated by investigating a real-life case study in one of Iran's high-risk supply chain areas. The proposed model is solved using the revised multi-choice goal programming method. Lastly, sensitivity analyses based on effective parameters are conducted to analyze the behavior of the developed Mixed-Integer Linear Programming. According to the results, not only is the model capable of balancing three objective functions, but it is also capable of providing resilient and responsive networks. To enhance the design of the supply chain network, this paper has considered various COVID-19 variants and their infectious rates, in contrast to prior studies that did not consider the variations in demand and societal impact exhibited by different virus variants.

4.
Environ Sci Pollut Res Int ; 30(39): 90050-90087, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37060409

RESUMO

There is increasing attention to the sustainable development of supply chain (SC) and reverse logistics (RL) in the contemporary competitive economy, notably in the food sector, by scholars and stakeholders. This study investigates a sustainable closed-loop supply chain (CLSC) for fish due to its high value in the family food basket, its perishability, and the importance of waste product recycling. A multi-objective mathematical model is developed under uncertainty and sustainability criteria to optimize production rates with the aim of better distribution among different demand markets, total costs, social issues, and negative environmental effects (e.g., CO2 emissions and unused/waste products). A combination of exact, meta-heuristic, and hybrid meta-heuristic algorithms are used to solve the suggested model. Then, the optimal solutions are found using the Taguchi method by evaluating the best initial replies. The solutions are evaluated based on various performance metrics. The analysis of variance (ANOVA) and the "filtering/displaced ideal solution" methods determine the best solution approach. Moreover, a case study with a trout CLSC in Northern Iran is examined. In addition, the Lingo software utilizes the ε-constraint method to evaluate and check the performance of the algorithms under different levels of uncertainty. Finally, sensitivity analyses are carried out to confirm the efficacy of the proposed algorithms. The findings demonstrate the proposed network's outstanding consistency with the algorithms used and its application and efficiency.


Assuntos
Modelos Teóricos , Resíduos , Incerteza , Custos e Análise de Custo , Irã (Geográfico)
5.
Eng Appl Artif Intell ; 120: 105903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36712822

RESUMO

Supply chains have been impacted by the COVID-19 pandemic, which is the most recent worldwide disaster. After the world health organization recognized the latest phenomena as a pandemic, nations became incapacitated to provide the required medical supplies. In the current situation, the world seeks an essential solution for COVID-19 Pandemic Wastes (CPWs) by pushing the pandemic to a stable condition. In this study, the development of a supply chain network is contrived for CPWs utilizing optimization modeling tools. Also, an IoT platform is devised to enable the proposed model to retrieve real-time data from IoT devices and set them as the model's inputs. Moreover, sustainability aspects are appended to the proposed IoT-enabled model considering its triplet pillars as objective functions. A real case of Puebla city and 15 experiments are used to validate the model. Furthermore, a combination of metaheuristic algorithms utilized to solve the model and also seven evaluation indicators endorse the selection of efficient solution approaches. The evaluation indicators are appointed as the inputs of statistical and multicriteria decision-making hybridization to prioritize the algorithms. The result of the Entropy Weights method and Combined Compromise Solution approach confirms that MOGWO has better performance for the medium-sizes, case study and an overall view. Also, NSHHO outclasses the small-size and large-size experiments.

6.
Environ Res ; 216(Pt 3): 114652, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309214

RESUMO

Aquatic and terrestrial ecosystems are both threatened by toxic wastewater. The unique properties of nanomaterials are currently being studied thoroughly for treating sewage. Nanomaterials also have the advantage of being capable of removing organic matter, fungi, and viruses from wastewater. Advanced oxidation processes are used in nanomaterials to treat wastewater. Additionally, nanomaterials have a large effective area of contact due to their tiny dimensions. The adsorption and reactivity of nanomaterials are strong. Wastewater treatment would benefit from the development of nanomaterial technology. Second, the paper provides a comprehensive analysis of the unique characteristics of nanomaterials in wastewater treatment, their proper use, and their prospects. In addition to focusing on their economic feasibility, since limited forms of nanomaterials have been manufactured, it is also necessary to consider their feasibility in terms of their technical results. According to this study, the significant adsorption area, excellent chemical reaction, and electrical conductivity of nanoparticles (NPs) contribute to the successful treatment of wastewater.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias/química , Ecossistema , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Nanoestruturas/química
7.
Chemosphere ; 313: 137424, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495985

RESUMO

The efficacy of novel polycarbonate ultrafiltration, aluminum oxide nanoparticle (Al2O3-NPs) volume fraction, temperature, and water/ethylene glycol (EG) ratio were evaluated to determine the thermophysical properties of the membrane. 5%-10% of Al2O3-NPs have been added to the PC. A machine learning approach was used to compare the volume fraction of Al2O3-NPs, the temperature, and the water-to-ethylene glycol (EG) ratio. To determine the impact of Al2O3-NPs loading on the Response Surface Method (RSM), DOE, ANOVA, ANN, MLP, and NSGA-II, the number of aluminum oxide nanoparticles (Al2O3-NPs), temperature, and water/ethylene glycol (EG) on membranes in PC ultrafiltration are evaluated. Based on the Relative Thermal Conductivity Model (RSM), the regression coefficient of Al2O3 in water and EG was 0.9244 and 0.9170 with adjusted regression coefficients. A higher concentration of EG enhances the thermal conductivity of the membrane when the effective parameters are considered. The effect of temperature on the relative viscosity of the membrane led to the conclusion that Al2O3 water/EG can cool at high temperatures while providing no viscosity change. When Al2O3 is dissolved in water and EG, more EG is necessary to optimize the mode of reactivity. Using the MLP model, the calculated R-value is 0.9468, the MSE is 0.001752989 (mean square error), and the MAE is 0.01768558 (mean absolute error). RSM predicted the average thermal conductivity behavior of nanofluid better. The ANN model, however, has proven to be more effective than the RSM in simulating the relative viscosity of nanofluids. The NSGA-II optimized results showed that the minimum relative viscosity and maximum coefficient of thermal conductivity occurred at the lowest water ratio and maximum temperature.


Assuntos
Nanopartículas , Água , Temperatura , Ultrafiltração , Óxido de Alumínio , Etilenoglicóis
8.
J Environ Manage ; 322: 115945, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041298

RESUMO

The ever-growing concern of sustainability and survivability attracts academicians and practitioners to develop strategies and supply chain capabilities that cater to the challenges and helps in achieving the sustainability development goals. There is a need to develop a holistic model that facilitates understanding the relationships among supply chain practices, industry 4.0 technologies, and supply chain performance measures. Thus, this study examines the mediating effect of industry 4.0 technologies on supply chain management practices and supply chain performance measures. A survey-based data was collected from manufacturing organizations across India, and 361 complete responses were obtained. Structural equation modeling (SEM) was utilized for data analysis. This study has multiple contributions. First, the results indicate that the supply chain management practices influence the industry 4.0 technologies adoption. Second, the results also revealed that the industry 4.0 technologies significantly positively affect supply chain performance measures. Finally, industry 4.0 technologies mediated the relations between supply chain management practices and supply chain performance measures. Furthermore, the findings offer important insights into understanding the underlying mechanisms in successfully adopting and effectively using industry 4.0 technologies. The implications for theory and practices are also discussed.


Assuntos
Comércio , Indústrias , Índia , Organizações , Tecnologia
9.
Environ Pollut ; 307: 119587, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35680063

RESUMO

Decision Support System (DSS) is a novel approach for smart, sustainable controlling of environmental phenomena and purification processes. Toluene is one of the most widely used petroleum products, which adversely impacts on human health. In this study, Fusarium Solani fungi are utilized as the engine of the toluene bioremediation procedure for the monitoring part of DSS. Experiments are optimized by Central Composite Design (CCD) - Response Surface Methodology (RSM), and the behavior of the mentioned fungi is estimated by M5 Pruned model tree (M5P), Gaussian Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithms as the prediction section of DSS. Finally, the control stage of DSS is provided by integrated Petri Net modeling and Failure Modes and Effects Analysis (FMEA). The findings showed that Aeration Intensity (AI) and Fungi load/Biological Waste (F/BW) are the most influential mechanical and biological factors, with P-value of 0.0001 and 0.0003, respectively. Likewise, the optimal values of main mechanical parameters include AI, and the space between pipes (S) are equal to 13.76 m3/h and 15.99 cm, respectively. Also, the optimum conditions of biological features containing F/BW and pH are 0.001 mg/g and 7.56. In accordance with the kinetic study, bioremediation of toluene by Fusarium Solani is done based on a first-order reaction with a 0.034 s-1 kinetic coefficient. Finally, the machine learning practices showed that the GP (R2 = 0.98) and M5P (R2 = 0.94) have the most precision for predicting Removal Percentage (RP) for mechanical and biological factors, respectively. At the end of the present research, it is found that by controlling seven possible risk factors in bioremediation operation through the FMEA- Petri Net technique, efficiency of the process can be adjusted to optimum value.


Assuntos
Solo , Tolueno , Biodegradação Ambiental , Fatores Biológicos , Fusarium , Humanos , Desenvolvimento Sustentável , Nações Unidas
10.
J Environ Manage ; 312: 114939, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35338986

RESUMO

A Decision Support System (DSS) is a highly efficient concept for managing complex objects in nature or human-made phenomena. The main purpose of the present study is related to designing and implementation of real-time monitoring, prediction, and control system for flood disaster management as a DSS. Likewise, the problem of statement in the research is correlated to implementation of a system for different climates of Iran as a unique flood control system. For the first time, this study coupled hydrological data mining, Machine Learning (ML), and Multi-Criteria Decision Making (MCDM) as smart alarm and prevention systems. Likewise, it created the platform for conditional management of floods in Iran's different clusters of climates. According to the KMeans clustering system, which determines homogeneity of the hydrology of a specific region, Iran's rainfall is heterogeneous with 0.61 score, which is approved high efficiency of clustering in a vast country such as Iran with four seasons and different climates. In contrast, the relation of rainfall and flood disaster is evaluated by Nearest Neighbors Classification (NNC), Stochastic Gradient Descent (SGD), Gaussian Process Classifier (GPC), and Neural Network (NN) algorithms which have an acceptable correlation coefficient with a mean of 0.7. The machine learning outputs demonstrated that based on valid data existence problems in developing countries, just with verified precipitation records, the flood disaster can be estimated with high efficiency. In the following, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method as a Game Theory (GT) technique ranked the preventive flood damages strategies through three social (Se 1), environmental (Se 2), and economic (Se 3) crises scenarios. The solutions of flood disaster management are collected from literature review, and the opinion approves them of 9 senior experts who are retired from a high level of water resource management positions of Iran. The outcomes of the TOPSIS method proved that National announcement for public-institutional participation for rapid response and funding (G1-2), Establishment of delay structures to increase flood focus time to give the animals in the ecosystem the opportunity to escape to the upstream points and to preserve the habitat (G 2-8), and Granting free national financial resources by government agencies in order to rebuild sensitive infrastructure such as railways, hospitals, schools, etc. to the provincial treasury (G3-10) are selected as the best solution of flood management in Social, Environmental, and Economic crises, respectively. Finally, the collected data are categorized in Social, Environmental, and Economic aspects as three dimensions of Sustainable Development Goals (SDGs) and ranked based on the opinion of 32 experts in the five provinces of present case studies.


Assuntos
Desastres , Inundações , Países em Desenvolvimento , Desastres/prevenção & controle , Ecossistema , Hidrologia
12.
J Environ Manage ; 303: 114252, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894493

RESUMO

Many companies and organizations are pursuing "carbon footprint" projects to estimate their own contribution due to growing concerns about global climate change and carbon emissions. Measures such as carbon taxes are the most powerful means of dealing with the threats of climate change. In recent years, researchers have shown a particular interest in modelling supply chain networks under this scheme. Disorganized disposal of by-products from sugarcane mills is the inspiration of this research. In order to connect the problem with the real world, the proposed sustainable sugarcane supply chain network considers carbon taxes on the emission from industries and during transportation of goods. The presented mixed-integer linear programming modelling is a location-allocation problem and, due to the inherent complexity, it is considered a Non-Polynomial hard (NP-hard) problem. To deal with the model, three superior metaheuristics Genetic Algorithm (GA), Simulated Annealing (SA), Social Engineering Optimizer (SEO) and hybrid methods based on these metaheuristics, namely, Genetic-Simulated Annealing (GASA) and Genetic-Social Engineering Optimizer (GASEO), are employed. The control parameters of the algorithms are tuned using the Taguchi approach. Subsequently, one-way ANOVA is used to elucidate the performance of the proposed algorithms, which compliments the performance of the proposed GASEO.


Assuntos
Modelos Teóricos , Saccharum , Algoritmos , Pegada de Carbono , Meios de Transporte
13.
Expert Syst Appl ; 185: 115594, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34539097

RESUMO

Obviously, the Covid-19 pandemic has huge impact on most businesses and has caused serious and countless problems for them. Therefore, providing solutions for affected businesses to recover and improve their activities during pandemic times is inevitable. In this regard, ecotourism centers are one of the businesses that went through this problem and have faced significant dilemmas in their activities. Also, reportedly, there is no related research focusing on the recovery approaches to address these obstacles relating to these kinds of businesses during the pandemic. Therefore, all of these exhorted us to do the current research. In this paper, some practical and useful action plans for ecotourism centers are firstly developed to help these businesses. To obtain the action plans, some brainstorming sessions were held consisting of tourism experts, university professors, managers, owners, and some personnel of eco-tourism centers. In order to prioritize the defined action plans, four criteria are considered. Firstly, we compute the weights of the considered criteria by the Fuzzy DEMATEL and then they are prioritized using the Fuzzy VIKOR. The findings of the current study divulge that the AP2 "Standardization of the centers" and AP3 "Estimating demand number and increasing the capacity" and AP7 "Identifying other natural tourist attractions of the region" have the highest and lowest priority to be implemented.

14.
Appl Soft Comput ; 112: 107809, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34421442

RESUMO

The global epidemic caused by novel coronavirus continues to be a crisis in the world and a matter of concern. The way the epidemic has wreaked havoc on the international level has become difficult for the healthcare systems to supply adequately personal protection equipment for medical personnel all over the globe. In this paper, considering the COVID-19 outbreak, a multi-objective, multi-product, and multi-period model for the personal protection equipment demands satisfaction aiming to optimize total cost and shortage, simultaneously, is developed. The model is embedded with instances and validated by both modern and classic multi-objective metaheuristic algorithms. Moreover, the Taguchi method is exploited to set the metaheuristic into their best performances by finding their parameters' optimum level. Furthermore, fifteen test examples are designed to prove the established PPE supply chain model and tuned algorithms' applicability. Among the test examples, one is related to a real case study in Iran. Finally, metaheuristics are evaluated by a series of related metrics through different statistical analyses. It can be concluded from the obtained results that solution methods are practical and valuable to achieve the efficient shortage level and cost.

15.
Comput Ind Eng ; : 107429, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34075271

RESUMO

Nowadays, due to the COVID-19 outbreak, the most significant factor to be considered all over the world is to manage this pandemic and especially to address positive cases, efficiently and effectively. This can be achieved by simultaneously utilizing the present network with supply chain settings and also the Internet of Things (IoT). This consideration enables the accurate monitoring of suspected cases in real-time to optimize total service time. Hence, this paper firstly designs two sub-models to minimize distance and traffic while minimizing total response time. Our main contribution in this paper is to develop a dynamic scheme using IoT to deal with suspected cases. We also investigate the proposed methodology on a real case problem in Canada. A comprehensive analysis of the proposed methodology behavior has been conducted and the results showed the managerial decision-making process to address COVID-19 patients. The proposed approach establishes efficient strategies to identify suspicious COVID-19 cases and provide them with medical observance in a short time when utilized with IoT. The obtained results of the considered scenarios show 12% up to 15% improvement in the ambulance response time when using IoT.

16.
Appl Soft Comput ; 104: 107210, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33642961

RESUMO

The current universally challenging SARS-COV-2 pandemic has transcended all the social, logical, economic, and mortal boundaries regarding global operations. Although myriad global societies tried to address this issue, most of the employed efforts seem superficial and failed to deal with the problem, especially in the healthcare sector. On the other hand, the Internet of Things (IoT) has enabled healthcare system for both better understanding of the patient's condition and appropriate monitoring in a remote fashion. However, there has always been a gap for utilizing this approach on the healthcare system especially in agitated condition of the pandemics. Therefore, in this study, we develop two innovative approaches to design a relief supply chain network is by using IoT to address multiple suspected cases during a pandemic like the SARS-COV-2 outbreak. The first approach (prioritizing approach) minimizes the maximum ambulances response time, while the second approach (allocating approach) minimizes the total critical response time. Each approach is validated and investigated utilizing several test problems and a real case in Iran as well. A set of efficient meta-heuristics and hybrid ones is developed to optimize the proposed models. The proposed approaches have shown their versatility in various harsh SARS-COV-2 pandemic situations being dealt with by managers. Finally, we compare the two proposed approaches in terms of response time and route optimization using a real case study in Iran. Implementing the proposed IoT-based methodology in three consecutive weeks, the results showed 35.54% decrease in the number of confirmed cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...