Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(3): 1066-1086, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099626

RESUMO

The different behaviors of the drug amifampridine (AMP) against Mn(II), Cu(II), Zn(II) and Cd(II) metal ions, in the presence and absence of tris(2-aminoethyl)amine (tren) was studied. The results showed that AMP successfully coordinates with Cu(II), Zn(II) and Cd(II) metal ions, but interestingly it undergoes an unexpected dimerization through a C-H activation in the presence of different Mn(II) salts. A four-coordinate complex of zinc(II), [Zn(AMP)2Cl2] (1), a binuclear complex of cadmium(II), [Cd2(AMP)2Cl4] (2), three five-coordinate tren-based metal complexes, [Cu(tren)(AMP)](ClO4)2 (8), [Zn(tren)(AMP)]Cl2 (9) and [Cd(tren)(AMP)](ClO4)2 (10), three pyridinium salts, [AmpDimer]X (X = Cl-, NO3-, ClO4-; (3, 4 & 5)), and also two four-coordinate metal complexes with this pyridinium cation, [Zn(AmpDimer)Cl3] (6) and [Cd(AmpDimer)Cl3] (7), were synthesized. All new compounds were characterized by elemental analysis and IR spectroscopy, and by 1H- and 13C-NMR spectroscopy (for 1, 2, 3, 6, 7, 9 & 10) and by X-ray crystal structure determinations (for 1, 3, 4, 5, 7, 8 & 10). Theoretical studies showed that the [M(tren)(AMP)]2+ cations act as pH-sensitive drug carriers of AMP and release it upon protonation. The molecular docking studies on the interaction of AMP and the above complexes/salts with DNA and the proteins of SARS-CoV-2 showed that the synthesized complexes/salts have greater anticancer and anti-covid-19 activities than AMP alone.


Assuntos
Cádmio , Complexos de Coordenação , Cádmio/química , Sais , Amifampridina , Complexos de Coordenação/farmacologia , Simulação de Acoplamento Molecular , Dimerização , Metais/química , Zinco/química , Íons
2.
Dalton Trans ; 52(21): 7031-7047, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36880337

RESUMO

Tris(2-aminoethyl)amine (tren) coordinates to a Zn(II) ion to form the [Zn(tren)]2+ cation that accepts a monodentate favipiravir (FAV) anion. The results of this work show that the FAV anion is capable of binding to the [Zn(tren)]2+ cation through either a nitrogen or an oxygen atom (N/O-coordination). The energy decomposition analysis shows that, interestingly, both the strength and nature of the bonds between the [Zn(tren)]2+ cation and the N/O-coordinated FAV anion are almost the same. X-ray crystal structure determinations confirmed the existence of two types of cations in the solid state, [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+. The NMR data, in a DMSO solution, were consistent with either the N-coordinated or the O-coordinated complex, but not a mixture of the two linkage isomers. The theoretical data indicated that the [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+ cations have very similar stability in the gas phase, and in H2O, CH3OH, and DMSO solutions, and can also easily convert from one linkage isomer to the other. The experimental and theoretical data showed that, upon protonation of the above cations under acidic conditions (pH ≈ 3 to 5.5), the drug FAV will be easily released and replaced by a Cl- anion, or an H2O molecule, which will coordinate to the zinc atom showing the potential of [Zn(tren)]2+ as a safe drug vehicle. Molecular docking studies using two well-known molecular docking packages show the relatively strong binding interactions of the [Zn(tren)(N-FAV)]+ and [Zn(tren)(O-FAV)]+ cations with DNA and viral protein macromolecules.


Assuntos
Aminas , Zinco , Zinco/química , Água/química , Simulação de Acoplamento Molecular , Portadores de Fármacos , Dimetil Sulfóxido
3.
DNA Cell Biol ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090906

RESUMO

In this work, we have investigated the strength and mechanism of amifampridine (3,4-Diaminopyridine/3,4-DAP) interaction with calf thymus DNA (ct-DNA). The existence and the strength of interaction are evaluated using circular dichroism (CD), UV-vis absorption, and differential pulse voltammogram studies. Results from UV-vis absorption technique indicate that amifampridine can significantly interact with DNA through a binding constant of Kb = 1.66 × 105 M-1 at 298 K. The mechanism of the interaction between amifampridine and DNA is also studied using ionic effect investigations, competitive fluorescence experiments, viscosity measurements, and molecular docking studies. The viscosity results indicate that amifampridine can bind to DNA via intercalation binding mode. Competitive fluorescence experiments using Acridine Orange (AO) and Hoechst 33258 (HO) probes also reveal that amifampridine binds to DNA via an intercalation mode of binding. Finally, the molecular docking studies also suggest that amifampridine tends to bind with the G-C rich region of DNA.

4.
Int J Biol Macromol ; 118(Pt A): 1220-1228, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30001607

RESUMO

The freshly prepared magnetic iron oxide nanoparticles (MIONPs) were coated with SiO2 and then modified with a Si-based linker (SiL) having chlorine atom at the end of its chain. The resulting chlorine functionalized MIONPs were bonded to chitosan (CT) in trimethylamine solution. Then nevirapine (Nev) drug was loaded into above CT-SiL-MIONPs system and resulting Nev-loaded magnetic nanoparticles, Nev@CT-SiL-MIONPs, studied using different techniques. Furthermore, the value of Nev loading efficiency and also controlled delivery effect of Nev@CT-SiL-MIONP particles was determined by UV-vis spectrometer. Interestingly, the above nanomaterial showed a superparamagnetic property with a saturation magnetization value of 35.66 emu/g, indicating that it has an excellent potential application in the treatment of cancer using magnetic targeting drug delivery technology. Furthermore, the in-vitro antiproliferative activity of Nev@CT-SiL-MIONPs against cancer cell line (Hela) was compared with nevirapine using MTT colourimetric assay. The Nev-loaded magnetic nanoparticles were shown to be more effective antiproliferative on Hela cancer cell lines than nevirapine itself. Moreover, in vitro ct-DNA binding studies were investigated by UV-Vis and competitive fluorescence spectroscopies. The results showed that DNA aggregated on Nev-loaded nanoparticles via groove binding mode.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Quitosana , Materiais Revestidos Biocompatíveis , Portadores de Fármacos , Nanopartículas de Magnetita , Neoplasias/tratamento farmacológico , Nevirapina , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Quitosana/química , Quitosana/farmacocinética , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Nevirapina/química , Nevirapina/farmacocinética , Nevirapina/farmacologia
5.
J Fluoresc ; 28(1): 195-206, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986738

RESUMO

In the present work, the interaction of Isoxsuprine (ISX) with Calf thymus DNA (ct-DNA) under physiological conditions (Tris-HCl buffer of pH 7.4) was investigated by using electronic absorption, circular dichroism, viscosity, electrochemical studies, fluorescence techniques, salt effect studies and computational studies. Competitive fluorimetric studies with Hoechst 33258 have shown that ISX exhibit the ability to displace the DNA-bound Hoechst 33258, indicating that it binds to ct-DNA in strong competition with Hoechst 33258 for the minor groove binding. Furthermore, the resulting data showed that ISX cannot displace methylene blue or acridine orange, which are the common intercalator molecules. The viscosity of ct-DNA solution was almost unchanged on addition of ISX and circular dichroism (CD) spectra of ct-DNA showed small changes in the presence of ISX which is in agreement with groove binding mode of interaction. Thus all above studies showed that the ISX drug binds to ct-DNA in a groove binding mode.The salt-effect studies showed the non-electrostatic nature of binding of ISX to ct-DNA. Moreover, molecular docking results support the above experimental data and suggest that ISX prefers to bind on the minor groove of ct-DNA.


Assuntos
DNA/metabolismo , Substâncias Intercalantes/metabolismo , Isoxsuprina/metabolismo , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência/métodos , Animais , Sítios de Ligação , Ligação Competitiva , Bovinos , Dicroísmo Circular , DNA/química , Substâncias Intercalantes/química , Isoxsuprina/química , Conformação de Ácido Nucleico , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...