Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 22(10): e19263, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33090109

RESUMO

BACKGROUND: Collectively, an estimated 5% of the population have a genetic disease. Many of them feature characteristics that can be detected by facial phenotyping. Face2Gene CLINIC is an online app for facial phenotyping of patients with genetic syndromes. DeepGestalt, the neural network driving Face2Gene, automatically prioritizes syndrome suggestions based on ordinary patient photographs, potentially improving the diagnostic process. Hitherto, studies on DeepGestalt's quality highlighted its sensitivity in syndromic patients. However, determining the accuracy of a diagnostic methodology also requires testing of negative controls. OBJECTIVE: The aim of this study was to evaluate DeepGestalt's accuracy with photos of individuals with and without a genetic syndrome. Moreover, we aimed to propose a machine learning-based framework for the automated differentiation of DeepGestalt's output on such images. METHODS: Frontal facial images of individuals with a diagnosis of a genetic syndrome (established clinically or molecularly) from a convenience sample were reanalyzed. Each photo was matched by age, sex, and ethnicity to a picture featuring an individual without a genetic syndrome. Absence of a facial gestalt suggestive of a genetic syndrome was determined by physicians working in medical genetics. Photos were selected from online reports or were taken by us for the purpose of this study. Facial phenotype was analyzed by DeepGestalt version 19.1.7, accessed via Face2Gene CLINIC. Furthermore, we designed linear support vector machines (SVMs) using Python 3.7 to automatically differentiate between the 2 classes of photographs based on DeepGestalt's result lists. RESULTS: We included photos of 323 patients diagnosed with 17 different genetic syndromes and matched those with an equal number of facial images without a genetic syndrome, analyzing a total of 646 pictures. We confirm DeepGestalt's high sensitivity (top 10 sensitivity: 295/323, 91%). DeepGestalt's syndrome suggestions in individuals without a craniofacially dysmorphic syndrome followed a nonrandom distribution. A total of 17 syndromes appeared in the top 30 suggestions of more than 50% of nondysmorphic images. DeepGestalt's top scores differed between the syndromic and control images (area under the receiver operating characteristic [AUROC] curve 0.72, 95% CI 0.68-0.76; P<.001). A linear SVM running on DeepGestalt's result vectors showed stronger differences (AUROC 0.89, 95% CI 0.87-0.92; P<.001). CONCLUSIONS: DeepGestalt fairly separates images of individuals with and without a genetic syndrome. This separation can be significantly improved by SVMs running on top of DeepGestalt, thus supporting the diagnostic process of patients with a genetic syndrome. Our findings facilitate the critical interpretation of DeepGestalt's results and may help enhance it and similar computer-aided facial phenotyping tools.


Assuntos
Computadores/normas , Anormalidades Craniofaciais/diagnóstico por imagem , Face/diagnóstico por imagem , Feminino , Humanos , Masculino , Fenótipo
2.
Eur J Hum Genet ; 27(12): 1827-1835, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31320746

RESUMO

Variants in DONSON were recently identified as the cause of microcephaly, short stature, and limb abnormalities syndrome (MISSLA). The clinical spectra of MISSLA and Fanconi anaemia (FA) strongly overlap. For that reason, some MISSLA patients have been clinically diagnosed with FA. Here, we present the clinical data of siblings with MISSLA featuring a novel DONSON variant and summarize the current literature on MISSLA. Additionally, we perform computer-aided image analysis using the DeepGestalt technology to test how distinct the facial features of MISSLA and FA patients are. We show that MISSLA has a specific facial gestalt. Notably, we find that also FA patients feature facial characteristics recognizable by computer-aided image analysis. We conclude that computer-assisted image analysis improves diagnostic precision in both MISSLA and FA.


Assuntos
Proteínas de Ciclo Celular/genética , Nanismo/genética , Anemia de Fanconi/genética , Microcefalia/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Nanismo/diagnóstico , Nanismo/diagnóstico por imagem , Nanismo/patologia , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/diagnóstico por imagem , Anemia de Fanconi/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/diagnóstico , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação , Fenótipo , Irmãos
3.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31164752

RESUMO

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Assuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Aprendizado Profundo , Exoma/genética , Feminino , Genômica , Humanos , Masculino , Fenótipo , Software
4.
J Inherit Metab Dis ; 41(3): 533-539, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29623569

RESUMO

Significant improvements in automated image analysis have been achieved in recent years and tools are now increasingly being used in computer-assisted syndromology. However, the ability to recognize a syndromic facial gestalt might depend on the syndrome and may also be confounded by severity of phenotype, size of available training sets, ethnicity, age, and sex. Therefore, benchmarking and comparing the performance of deep-learned classification processes is inherently difficult. For a systematic analysis of these influencing factors we chose the lysosomal storage diseases mucolipidosis as well as mucopolysaccharidosis type I and II that are known for their wide and overlapping phenotypic spectra. For a dysmorphic comparison we used Smith-Lemli-Opitz syndrome as another inborn error of metabolism and Nicolaides-Baraitser syndrome as another disorder that is also characterized by coarse facies. A classifier that was trained on these five cohorts, comprising 289 patients in total, achieved a mean accuracy of 62%. We also developed a simulation framework to analyze the effect of potential confounders, such as cohort size, age, sex, or ethnic background on the distinguishability of phenotypes. We found that the true positive rate increases for all analyzed disorders for growing cohorts (n = [10...40]) while ethnicity and sex have no significant influence. The dynamics of the accuracies strongly suggest that the maximum distinguishability is a phenotype-specific value, which has not been reached yet for any of the studied disorders. This should also be a motivation to further intensify data sharing efforts, as computer-assisted syndrome classification can still be improved by enlarging the available training sets.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/tendências , Erros Inatos do Metabolismo/diagnóstico , Adolescente , Algoritmos , Criança , Fácies , Feminino , Deformidades Congênitas do Pé/diagnóstico , Deformidades Congênitas do Pé/metabolismo , Humanos , Hipotricose/diagnóstico , Hipotricose/metabolismo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/metabolismo , Masculino , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/tendências , Fenótipo , Síndrome de Smith-Lemli-Opitz/diagnóstico , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome
5.
Genome Med ; 10(1): 3, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29310717

RESUMO

BACKGROUND: Glycosylphosphatidylinositol biosynthesis defects (GPIBDs) cause a group of phenotypically overlapping recessive syndromes with intellectual disability, for which pathogenic mutations have been described in 16 genes of the corresponding molecular pathway. An elevated serum activity of alkaline phosphatase (AP), a GPI-linked enzyme, has been used to assign GPIBDs to the phenotypic series of hyperphosphatasia with mental retardation syndrome (HPMRS) and to distinguish them from another subset of GPIBDs, termed multiple congenital anomalies hypotonia seizures syndrome (MCAHS). However, the increasing number of individuals with a GPIBD shows that hyperphosphatasia is a variable feature that is not ideal for a clinical classification. METHODS: We studied the discriminatory power of multiple GPI-linked substrates that were assessed by flow cytometry in blood cells and fibroblasts of 39 and 14 individuals with a GPIBD, respectively. On the phenotypic level, we evaluated the frequency of occurrence of clinical symptoms and analyzed the performance of computer-assisted image analysis of the facial gestalt in 91 individuals. RESULTS: We found that certain malformations such as Morbus Hirschsprung and diaphragmatic defects are more likely to be associated with particular gene defects (PIGV, PGAP3, PIGN). However, especially at the severe end of the clinical spectrum of HPMRS, there is a high phenotypic overlap with MCAHS. Elevation of AP has also been documented in some of the individuals with MCAHS, namely those with PIGA mutations. Although the impairment of GPI-linked substrates is supposed to play the key role in the pathophysiology of GPIBDs, we could not observe gene-specific profiles for flow cytometric markers or a correlation between their cell surface levels and the severity of the phenotype. In contrast, it was facial recognition software that achieved the highest accuracy in predicting the disease-causing gene in a GPIBD. CONCLUSIONS: Due to the overlapping clinical spectrum of both HPMRS and MCAHS in the majority of affected individuals, the elevation of AP and the reduced surface levels of GPI-linked markers in both groups, a common classification as GPIBDs is recommended. The effectiveness of computer-assisted gestalt analysis for the correct gene inference in a GPIBD and probably beyond is remarkable and illustrates how the information contained in human faces is pivotal in the delineation of genetic entities.


Assuntos
Citometria de Fluxo/métodos , Glicosilfosfatidilinositóis/biossíntese , Processamento de Imagem Assistida por Computador , Anormalidades Múltiplas/metabolismo , Automação , Biomarcadores/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Fenótipo , Distúrbios do Metabolismo do Fósforo/metabolismo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...