Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1146431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234777

RESUMO

Streptococcus pyogenes causes a multitude of local and systemic infections, the most common being pharyngitis in children. Recurrent pharyngeal infections are common and are thought to be due to the re-emergence of intracellular GAS upon completion of antibiotic treatment. The role of colonizing biofilm bacteria in this process is not fully clear. Here, live respiratory epithelial cells were inoculated with broth-grown or biofilm bacteria of different M-types, as well as with isogenic mutants lacking common virulence factors. All M-types tested adhered to and were internalized into epithelial cells. Interestingly, internalization and persistence of planktonic bacteria varied significantly between strains, whereas biofilm bacteria were internalized in similar and higher numbers, and all strains persisted beyond 44 hours, showing a more homogenous phenotype. The M3 protein, but not the M1 or M5 proteins, was required for optimal uptake and persistence of both planktonic and biofilm bacteria inside cells. Moreover, the high expression of capsule and SLO inhibited cellular uptake and capsule expression was required for intracellular survival. Streptolysin S was required for optimal uptake and persistence of M3 planktonic bacteria, whereas SpeB improved intracellular survival of biofilm bacteria. Microscopy of internalized bacteria showed that planktonic bacteria were internalized in lower numbers as individual or small clumps of bacteria in the cytoplasm, whereas GAS biofilm bacteria displayed a pattern of perinuclear localization of bacterial aggregates that affected actin structure. Using inhibitors targeting cellular uptake pathways, we confirmed that planktonic GAS mainly uses a clathrin-mediated uptake pathway that also required actin and dynamin. Clathrin was not involved in biofilm internalization, but internalization required actin rearrangement and PI3 kinase activity, possibly suggesting macropinocytosis. Together these results provide a better understanding of the potential mechanisms of uptake and survival of various phenotypes of GAS bacteria relevant for colonization and recurrent infection.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/genética , Sorogrupo , Virulência , Actinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Biofilmes , Fatores de Virulência/metabolismo , Infecções Estreptocócicas/microbiologia
2.
Methods Mol Biol ; 2674: 3-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258957

RESUMO

Most pathobionts of the respiratory tract form biofilms during asymptomatic colonization to survive and persist in this niche. Environmental changes of the host niche, often resulting from infection with respiratory viruses, changes of the microbiota composition, or other host assaults, can result in biofilm dispersion and spread of bacteria to other host niches, resulting in infections, such as otitis media, pneumonia, sepsis, and meningitis. The niches that these bacteria encounter during colonization and infection vary markedly in nutritional availability and contain different carbon sources and levels of other essential nutrients needed for bacterial growth and survival. As these niche-related nutritional variations regulate bacterial behavior and phenotype, a better understanding of bacterial niche-associated metabolic activity is likely to provide a broader understanding of bacterial pathogenesis. In this chapter, we use Streptococcus pneumoniae as a model respiratory pathobiont. We describe methods and models used to grow bacteria planktonically or to form biofilms in vitro by incorporating crucial host environmental factors, including the various carbon sources associated with specific niches, such as the nasopharynx or bloodstream. We then present methods describing how these models can be used to study bacterial phenotypes and their association with metabolic energy production and the generation of fermentation products.


Assuntos
Otite Média , Infecções Pneumocócicas , Humanos , Infecções Pneumocócicas/microbiologia , Plâncton , Streptococcus pneumoniae/genética , Biofilmes
3.
Antibiotics (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830333

RESUMO

Emerging evidence suggests differential effects of therapeutic antibiotics on infant T cell responses to pathogens. In this study, we explored the impact of the treatment of mouse infants with amoxicillin and the human milk-derived antimicrobial HAMLET (human alpha-lactalbumin made lethal to tumor cells) on T cell responses to Streptococcus pneumoniae. Lung cells and splenocytes were isolated from the infant mice subjected to intranasal administration of amoxicillin, HAMLET, or a combination of HAMLET and amoxicillin, and cultured with S. pneumoniae to measure T cell responses. After in-vitro stimulation with S. pneumoniae, lung cells from amoxicillin- or amoxicillin plus HAMLET-treated mice produced lower levels of Th17 (IL-17A), but not Th1 (IFN-γ), cytokine than mice receiving HAMLET or PBS. IL-17A/IFN-γ cytokine levels produced by the stimulated splenocytes, on the other hand, revealed no significant difference among treatment groups. Further analysis of T cell cytokine profiles by flow cytometry showed that lung CD4+, but not CD8+, T cells from amoxicillin- or HAMLET plus amoxicillin-treated mice expressed decreased levels of IL-17A compared to those from HAMLET-exposed or control mice. Collectively, these results indicate that exposure of infant mice to amoxicillin, but not HAMLET, may suppress lung Th17 responses to S. pneumoniae.

4.
J Vis Exp ; (187)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36279528

RESUMO

Streptococcus pneumoniae (pneumococcus) is an asymptomatic colonizer of the nasopharynx in most individuals but can progress to a pulmonary and systemic pathogen upon influenza A virus (IAV) infection. Advanced age enhances host susceptibility to secondary pneumococcal pneumonia and is associated with worsened disease outcomes. The host factors driving those processes are not well defined, in part due to a lack of animal models that reproduce the transition from asymptomatic colonization to severe clinical disease. This paper describes a novel mouse model that recreates the transition of pneumococci from asymptomatic carriage to disease upon viral infection. In this model, mice are first intranasally inoculated with biofilm-grown pneumococci to establish asymptomatic carriage, followed by IAV infection of both the nasopharynx and lungs. This results in bacterial dissemination to the lungs, pulmonary inflammation, and obvious signs of illness that can progress to lethality. The degree of disease is dependent on the bacterial strain and host factors. Importantly, this model reproduces the susceptibility of aging, because compared to young mice, old mice display more severe clinical illness and succumb to disease more frequently. By separating carriage and disease into distinct steps and providing the opportunity to analyze the genetic variants of both the pathogen and the host, this S. pneumoniae/IAV co-infection model permits the detailed examination of the interactions of an important pathobiont with the host at different phases of disease progression. This model can also serve as an important tool for identifying potential therapeutic targets against secondary pneumococcal pneumonia in susceptible hosts.


Assuntos
Coinfecção , Vírus da Influenza A , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Pneumocócica , Camundongos , Animais , Streptococcus pneumoniae/genética , Coinfecção/complicações , Coinfecção/microbiologia , Nasofaringe , Modelos Animais de Doenças , Infecções Pneumocócicas/microbiologia
6.
Front Cell Infect Microbiol ; 12: 877995, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646720

RESUMO

The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae - a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae, which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.


Assuntos
Infecções Bacterianas , Klebsiella pneumoniae , Antibacterianos/farmacologia , Biofilmes , Humanos , Klebsiella pneumoniae/genética , Virulência
8.
Front Microbiol ; 13: 898815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633685

RESUMO

Streptococcus pneumoniae is a pathogen responsible for high morbidity and mortality worldwide. The polysaccharide capsule confers protection against phagocytosis and influences many aspects of pneumococcal pathogenesis. The capsular polysaccharides (CPS) are highly immunogenic and exhibit great structural variability, with more than 100 serotypes described so far. Antimicrobial peptides (AMPs) are an important part of the innate defense mechanisms against many pathogens. Indolicidin is a cationic AMP produced by bovine neutrophils, with bactericidal effects against several bacteria. CPS has been shown to interfere with the ability of AMPs to kill pneumococci, but the effects of capsule variability on susceptibility to indolicidin have not been explored. The present work determined the effects of capsule on resistance to indolicidin in vitro. Using a bactericidal plate assay, we observed that different pneumococcal serotypes exhibited variable resistance to indolicidin, which correlated with the capsule net charge. Interestingly, the effect of capsule expression on resistance to indolicidin was dependent on the serotype; bacteria with lower zeta potential were more resistant to indolicidin when capsule was present, while those with less negative surface charge were more resistant in the absence of capsule. The addition of purified CPS partially rescued the bacteria from the bactericidal effects of indolicidin, while the addition of anticapsular antibodies accentuated the peptide's bactericidal action, suggesting a possible new protective mechanism induced by polysaccharide-based pneumococcal vaccines.

9.
Breastfeed Med ; 17(2): 163-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34809492

RESUMO

Background: New variants are evolving in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and receptor binding domain (RBD) mutations have been associated with a higher capacity to evade neutralizing antibodies (NAbs). We aimed at determining the impact of COVID-19 vaccine and infection on human milk antibody titers and activity against the RBD mutations from SARS-CoV-2 variants of concern. Materials and Methods: Milk samples were collected from 19 COVID-19 vaccinated women, 10 women who had a positive COVID-19 PCR test, and 13 unvaccinated women. The titers and NAbs of secretory IgA (SIgA)/IgA, secretory IgM (IgM)/IgM, and IgG against SARS-CoV-2 RBD with mutations N501Y or E484K were measured by using ELISA and a surrogate virus neutralization assay. Results: The titers of human milk IgG against N501Y were higher in the COVID-19 vaccine group than in the no-vaccine group but comparable with the COVID-19 PCR group. Other antibody titers did not differ between the three groups. The titers of SIgA/IgA were higher than those of SIgM/IgM and IgG in all three groups. The titers of SIgM/IgM and the inhibition of NAbs were higher against the mutation E484K than N501Y. Milk NAb did not differ between the three groups, but the inhibition of NAb against binding of the two mutant RBD proteins to their receptor was higher in the COVID-19 vaccine and PCR groups than in milk from prepandemic women. Conclusions: COVID-19 vaccination and exposure of mothers to SARS-CoV-2 influenced the titers and NAbs in breast milk against the variants of concern.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19 , Leite Humano/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Aleitamento Materno , COVID-19/imunologia , Vacinas contra COVID-19 , Feminino , Humanos , Mutação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Front Microbiol, v. 13, 898815, maio. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4380

RESUMO

Streptococcus pneumoniae is a pathogen responsible for high morbidity and mortality worldwide. The polysaccharide capsule confers protection against phagocytosis and influences many aspects of pneumococcal pathogenesis. The capsular polysaccharides (CPS) are highly immunogenic and exhibit great structural variability, with more than 100 serotypes described so far. Antimicrobial peptides (AMPs) are an important part of the innate defense mechanisms against many pathogens. Indolicidin is a cationic AMP produced by bovine neutrophils, with bactericidal effects against several bacteria. CPS has been shown to interfere with the ability of AMPs to kill pneumococci, but the effects of capsule variability on susceptibility to indolicidin have not been explored. The present work determined the effects of capsule on resistance to indolicidin in vitro. Using a bactericidal plate assay, we observed that different pneumococcal serotypes exhibited variable resistance to indolicidin, which correlated with the capsule net charge. Interestingly, the effect of capsule expression on resistance to indolicidin was dependent on the serotype; bacteria with lower zeta potential were more resistant to indolicidin when capsule was present, while those with less negative surface charge were more resistant in the absence of capsule. The addition of purified CPS partially rescued the bacteria from the bactericidal effects of indolicidin, while the addition of anticapsular antibodies accentuated the peptide’s bactericidal action, suggesting a possible new protective mechanism induced by polysaccharide-based pneumococcal vaccines.

11.
Polymers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502964

RESUMO

BACKGROUND: Streptococcus pneumoniae remains a major cause of community-acquired pneumonia, meningitis, and other diseases, contributing significantly to high morbidity and mortality worldwide. Although it responds to antibiotics, their use is becoming limited due to the rise in antibiotic resistance, which necessitates the development of new therapeutics. Nanotechnology is used to counteract antimicrobial resistance. In this regard, polymeric nanoparticles (NPs) made of natural, biodegradable, biocompatible, and cationic polymers such as Chitosan (CNPs) exhibit wide-spectrum antimicrobial activity. Therefore, this study aimed to prepare CNPs, characterize their physiochemical characteristics: particle size (PZ), polydispersity index (PDI), and zeta potential (ZP), and investigate their antimicrobial activity against Streptococcus pneumoniae TIGR4 (virulent serotype 4) and its capsular mutant (∆cps). METHODS: CNPs were prepared at 1, 2.5, and 5 mg/mL concentrations using the ion gelation method. Then, PZ, PDI, and ZP were characterized using a Zetasizer. Transmission electron microscopy (TEM) was used to visualize the CNP's morphology. Broth and agar dilution methods were used to assess their antimicrobial activity. Cytotoxicity of prepared NPs on A549 cells and their effect on pneumococcal hemolysis were also investigated. RESULTS: Spherical CNPs were produced with PZ ranging from 133.3 nm ± 0.57 to 423 nm ± 12.93 PDI < 0.35, and ZP from 19 ± 0.115 to 27 ± 0.819. The prepared CNPs exhibited antibacterial activity against TIGR4 and its capsule mutant with a minimum inhibitory concentration (MIC90) of 0.5 to 2.5 mg/mL in a non-acidic environment. The hemolysis assay results revealed that CNPs reduced bacterial hemolysis in a concentration-dependent manner. Their mammalian cytotoxicity results indicated that CNPs formed from low concentrations of Chitosan (Cs) were cytocompatible. CONCLUSION: Nanochitosan particles showed anti-pneumococcal activity regardless of the presence of capsules. They resulted in a concentration-dependent reduction in bacterial hemolysis and were cytocompatible at a lower concentration of Cs. These findings highlight the potential of CNPs in the treatment of pneumococcal diseases.

12.
Infect Immun ; 89(8): e0047120, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031128

RESUMO

Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2-month-old) mice, coinfection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease, and mortality in a fraction of mice. In aged mice (18 to 24 months), coinfection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo. Conversely, aging and pneumococcal colonization also blunted alpha interferon (IFN-α) production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden, likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and coinfection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense.


Assuntos
Envelhecimento , Coinfecção , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/etiologia , Streptococcus pneumoniae/patogenicidade , Viroses/virologia , Fatores Etários , Envelhecimento/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A , Camundongos , Infecções por Orthomyxoviridae/virologia , Virulência , Viroses/imunologia
13.
Eur J Immunol ; 51(4): 965-977, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33348422

RESUMO

HAMLET is a protein-lipid complex with a specific and broad bactericidal and tumoricidal activity, that lacks cytotoxic activity against healthy cells. In this study, we show that HAMLET also has general immune-stimulatory effects on primary human monocyte-derived dendritic cells and macrophages (Mo-DC and Mo-M) and murine RAW264.7 macrophages. HAMLET, but not its components alpha-lactalbumin or oleic acid, induces mature CD14low/- CD83+ Mo-DC and M1-like CD14+ CD86++ Mo-M surface phenotypes. Concomitantly, inflammatory mediators, including IL-2, IL-6, IL-10, IL-12 and MIP-1α, were released in the supernatant of HAMLET-stimulated cells, indicating a mainly pro-inflammatory phenotype. The HAMLET-induced phenotype was mediated by calcium, NFκB and p38 MAPK signaling in Mo-DCs and calcium, NFκB and ERK signaling in Mo-M as inhibitors of these pathways almost completely blocked the induction of mature Mo-DCs and M1-like Mo-M. Compared to unstimulated Mo-DCs, HAMLET-stimulated Mo-DCs were more potent in inducing T cell proliferation and HAMLET-stimulated macrophages were more efficient in phagocytosis of Streptococcus pneumoniae in vitro. This indicates a functionally activated phenotype of HAMLET-stimulated DCs and macrophages. Combined, we propose that HAMLET has a two-fold anti-bacterial activity; one inducing direct cytotoxic activity, the other indirectly mediating elimination of bacteria by activation of immune cells of the myeloid lineage.


Assuntos
Citocinas/imunologia , Mediadores da Inflamação/imunologia , Lactalbumina/imunologia , Células Mieloides/imunologia , Ácidos Oleicos/imunologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Lactalbumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , NF-kappa B/imunologia , NF-kappa B/metabolismo , Ácidos Oleicos/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Fenótipo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661124

RESUMO

Biofilm formation by Streptococcus pyogenes (group A streptococcus [GAS]) in model systems mimicking the respiratory tract is poorly documented. Most studies have been conducted on abiotic surfaces, which poorly represent human tissues. We have previously shown that GAS forms mature and antibiotic-resistant biofilms on physiologically relevant epithelial cells. However, the roles of the substratum, extracellular matrix (ECM) components, and GAS virulence factors in biofilm formation and structure are unclear. In this study, biofilm formation was measured on respiratory epithelial cells and keratinocytes by determining biomass and antibiotic resistance, and biofilm morphology was visualized using scanning electron microscopy. All GAS isolates tested formed biofilms that had similar, albeit not identical, biomass and antibiotic resistance for both cell types. Interestingly, functionally mature biofilms formed more rapidly on keratinocytes but were structurally denser and coated with more ECM on respiratory epithelial cells. The ECM was crucial for biofilm integrity, as protein- and DNA-degrading enzymes induced bacterial release from biofilms. Abiotic surfaces supported biofilm formation, but these biofilms were structurally less dense and organized. No major role for M protein, capsule, or streptolysin O was observed in biofilm formation on epithelial cells, although some morphological differences were detected. NAD-glycohydrolase was required for optimal biofilm formation, whereas streptolysin S and cysteine protease SpeB impaired this process. Finally, no correlation was found between cell adherence or autoaggregation and GAS biofilm formation. Combined, these results provide a better understanding of the role of biofilm formation in GAS pathogenesis and can potentially provide novel targets for future treatments against GAS infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/efeitos dos fármacos , Biomassa , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Farmacorresistência Bacteriana , Células Epiteliais/ultraestrutura , Matriz Extracelular/microbiologia , Matriz Extracelular/ultraestrutura , Queratinócitos/microbiologia , Queratinócitos/ultraestrutura , Sorogrupo , Fatores de Virulência/genética
15.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32661126

RESUMO

Otitis media with effusion (OME) is a common inflammatory disease that primarily affects children. OME is defined as a chronic low-grade inflammation of the middle ear (ME), without any signs of infection and with effusion persisting in the ME for more than 3 months. The precise pathogenesis is, however, not fully understood. Here, we comprehensively characterized and compared the host immune responses (inflammatory cells and mediators) and the overall microbial community composition (microbiota) present in matched middle ear effusion (MEE) samples, external ear canal (EEC) lavages, and nasopharynx (NPH) samples from children with OME. Female patients had significantly increased percentages of T lymphocytes and higher levels of a wide array of inflammatory mediators in their MEE compared to that of male patients, which were unrelated to microbiota composition. The relative abundances of identified microorganisms were strongly associated with their niche of origin. Furthermore, specific inflammatory mediators were highly correlated with certain bacterial species. Interestingly, some organisms displayed a niche-driven inflammation pattern in which presence of Haemophilus spp. and Corynebacterium propinquum in MEE was accompanied by proinflammatory mediators, whereas their presence in NPH was accompanied by anti-inflammatory mediators. For Turicella and Alloiococcus, we found exactly the opposite results, i.e., an anti-inflammatory profile when present in MEE, whereas their presence in the the NPH was accompanied by a proinflammatory profile. Together, our results indicate that immune responses in children with OME are highly niche- and microbiota-driven, but gender-based differences were also observed, providing novel insight into potential pathogenic mechanisms behind OME.


Assuntos
Microbiota , Otite Média com Derrame/imunologia , Otite Média com Derrame/microbiologia , Bactérias/classificação , Bactérias/imunologia , Bactérias/isolamento & purificação , Criança , Pré-Escolar , Citocinas/imunologia , Orelha Externa/imunologia , Orelha Externa/microbiologia , Orelha Média/imunologia , Orelha Média/microbiologia , Feminino , Humanos , Inflamação , Masculino , Microbiota/imunologia , Nasofaringe/imunologia , Nasofaringe/microbiologia , Especificidade de Órgãos , Otite Média com Derrame/patologia , Fatores Sexuais , Linfócitos T/imunologia
16.
Sci Rep ; 10(1): 22455, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33384455

RESUMO

Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx by forming multicellular biofilms. Due to the high level of asymptomatic carriage, transition to infections, such as otitis media, pneumonia, sepsis, and meningitis, occurs often enough that the pneumococcus remains a major cause of disease and death globally. Virus infection and virus-induced responses, such as increased temperature (fever), trigger release of virulent bacteria from colonizing biofilms. The exact mechanisms involved in pneumococcal egress during biofilm dispersal remain unknown, although we hypothesize that disruption of the biofilm matrix encasing the bacteria is necessary. Here, we utilized established in vitro biofilm dispersal models to investigate the involvement of proteases in bacterial egress from pneumococcal biofilms. We demonstrate the importance of protease activity, both through increased bacterial release following addition of proteases and reduced heat-induced biofilm dispersal in the presence of protease inhibitors. We identify a key role for the surface-exposed serine protease HtrA, but not PrtA, in heat-induced biofilm dispersal. Bacterial release from htrA-negative biofilms was significantly reduced compared to wild-type isogenic strains but was restored and increased above wild-type levels following addition of recombinant HtrA. Understanding the specific mechanisms involved in bacterial egress may provide novel targets for future strategies aimed to specifically interfere with disease progression without disturbing nasopharyngeal biofilm colonization.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Temperatura Alta , Infecções Pneumocócicas/microbiologia , Serina Endopeptidases/genética , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/metabolismo , Ativação Enzimática , Mutação , Fenótipo , Serina Endopeptidases/metabolismo
17.
J Biol Chem ; 294(51): 19511-19522, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31694917

RESUMO

HAMLET is a complex of human α-lactalbumin (ALA) and oleic acid and kills several Gram-positive bacteria by a mechanism that bears resemblance to apoptosis in eukaryotic cells. To identify HAMLET's bacterial targets, here we used Streptococcus pneumoniae as a model organism and employed a proteomic approach that identified several potential candidates. Two of these targets were the glycolytic enzymes fructose bisphosphate aldolase (FBPA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Treatment of pneumococci with HAMLET immediately inhibited their ATP and lactate production, suggesting that HAMLET inhibits glycolysis. This observation was supported by experiments with recombinant bacterial enzymes, along with biochemical and bacterial viability assays, indicating that HAMLET's activity is partially inhibited by high glucose-mediated stimulation of glycolysis but enhanced in the presence of the glycolysis inhibitor 2-deoxyglucose. Both HAMLET and ALA bound directly to each glycolytic enzyme in solution and solid-phase assays and effectively inhibited their enzymatic activities. In contrast, oleic acid alone had little to no inhibitory activity. However, ALA alone also exhibited no bactericidal activity and did not block glycolysis in whole cells, suggesting a role for the lipid moiety in the internalization of HAMLET into the bacterial cells to reach its target(s). This was verified by inhibition of enzyme activity in whole cells after HAMLET but not ALA exposure. The results of this study suggest that part of HAMLET's antibacterial activity relates to its ability to target and inhibit glycolytic enzymes, providing an example of a natural antimicrobial agent that specifically targets glycolysis.


Assuntos
Lactalbumina/química , Lipídeos/química , Proteínas do Leite/química , Leite Humano/química , Ácidos Oleicos/química , Streptococcus pneumoniae/citologia , Trifosfato de Adenosina/química , Desoxiglucose/química , Frutose-Bifosfato Aldolase/química , Glucose/química , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/química , Glicólise , Humanos , Viabilidade Microbiana , Ácido Oleico/química , Proteômica , Proteínas Recombinantes/química
18.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31591115

RESUMO

HAMLET is a protein-lipid complex derived from human milk that was first described for its tumoricidal activity. Later studies showed that HAMLET also has direct bactericidal activity against select species of bacteria, with highest activity against Streptococcus pneumoniae Additionally, HAMLET in combination with various antimicrobial agents can make a broader range of antibiotic-resistant bacterial species sensitive to antibiotics. Here, we show that HAMLET has direct antibacterial activity not only against pneumococci, but also against Streptococcus pyogenes (GAS) and Streptococcus agalactiae (GBS). Analogous to pneumococci, HAMLET-treatment of GAS and GBS resulted in depolarization of the bacterial membrane followed by membrane permeabilization and death that could be inhibited by calcium and sodium transport inhibitors. Treatment of clinical antibiotic-resistant isolates of S. pneumoniae, GAS, and GBS with sublethal concentrations of HAMLET in combination with antibiotics decreased the minimal inhibitory concentrations of the respective antibiotic into the sensitive range. This effect could also be blocked by ion transport inhibitors, suggesting that HAMLET's bactericidal and combination treatment effects used similar mechanisms. Finally, we show that HAMLET potentiated the effects of erythromycin against erythromycin-resistant bacteria more effectively than it potentiated killing by penicillin G of bacteria resistant to penicillin G. These results show for the first time that HAMLET effectively kills three different species of pathogenic Streptococci using similar mechanisms and also potentiate the activity of macrolides and lincosamides more effectively than combination treatment with beta-lactams. These findings suggest a potential therapeutic role for HAMLET in repurposing antibiotics currently causing treatment failures in patients.

19.
Methods Mol Biol ; 1968: 147-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929213

RESUMO

It is estimated that over 80% of bacterial infections are associated with biofilm formation. Biofilms are organized bacterial communities formed on abiotic surfaces, such as implanted or inserted medical devices, or on biological surfaces, such as epithelial linings and mucosal surfaces. Biofilm growth is advantageous for the bacterial organism as it protects the bacteria from antimicrobial host factors and allows the bacteria to reside in the host without causing excessive inflammation. Like many other opportunistic pathogens of the respiratory tract, Streptococcus pneumoniae forms biofilms during asymptomatic carriage, which promotes, among other things, persistence in the niche, intraspecies and interspecies communication, and spread of bacterial DNA. Changes within the colonizing environment resulting from host assaults, such as virus infection, can induce biofilm dispersion where bacteria leave the biofilm and disseminate to other sites with ensuing infection. In this chapter, we present methodology to form complex biofilms in the nasopharynx of mice and to evaluate the biofilm structure and function in this environment. Furthermore, we present methods that recapitulate this biofilm phenotype in vitro by incorporating crucial factors associated with the host environment and describe how these models can be used to study biofilm function, transformation, and dispersion.


Assuntos
Biofilmes/crescimento & desenvolvimento , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Camundongos , Nasofaringe/microbiologia , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/metabolismo , Virulência
20.
Artigo em Inglês | MEDLINE | ID: mdl-30420480

RESUMO

Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), has surpassed HIV/AIDS as the leading cause of death from a single infectious agent. The increasing occurrence of drug-resistant strains has become a major challenge for health care systems and, in some cases, has rendered TB untreatable. However, the development of new TB drugs has been plagued with high failure rates and costs. Alternative strategies to increase the efficacy of current TB treatment regimens include host-directed therapies or agents that make M. tuberculosis more susceptible to existing TB drugs. In this study, we show that HAMLET, an α-lactalbumin-oleic acid complex derived from human milk, has bactericidal activity against M. tuberculosis HAMLET consists of a micellar oleic acid core surrounded by a shell of partially denatured α-lactalbumin molecules and unloads oleic acid into cells upon contact with lipid membranes. At sublethal concentrations, HAMLET potentiated a remarkably broad array of TB drugs and antibiotics against M. tuberculosis For example, the minimal inhibitory concentrations of rifampin, bedaquiline, delamanid, and clarithromycin were decreased by 8- to 16-fold. HAMLET also killed M. tuberculosis and enhanced the efficacy of TB drugs inside macrophages, a natural habitat of M. tuberculosis Previous studies showed that HAMLET is stable after oral delivery in mice and nontoxic in humans and that it is possible to package hydrophobic compounds in the oleic acid core of HAMLET to increase their solubility and metabolic stability. The potential of HAMLET and other liprotides as drug delivery and sensitization agents in TB chemotherapy is discussed here.


Assuntos
Antituberculosos/farmacologia , Lactalbumina/farmacologia , Leite Humano/química , Ácidos Oleicos/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...