Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 751: 135804, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705935

RESUMO

An abrupt change in a sound feature (Test) in a continuous sound elicits an auditory evoked potential, peaking at approx. 100-180 ms (Change-N1) after the change onset. Change-N1 is attenuated by a preceding weak change stimulus (Prepulse), in the phenomenon known as prepulse inhibition (PPI). In this electroencephalographic study, we compared these two indexes among scalp electrodes. Change-N1 was elicited by an abrupt 10-dB increase in sound pressure in repeats of a 70-dB click sound at 100 Hz and was recorded using 22 electrodes in 31 healthy subjects. The prepulse was a 10-dB decrease in three consecutive clicks at 30, 40, and 50 ms before the Test onset. Four stimuli (Test alone, Test with Prepulse, Prepulse alone, and background alone) were presented randomly through headphones at an even probability. The results demonstrated that: (1) Electrodes at the frontal/central midline were reconfirmed to be suitable to record Change-N1; (2) Change-N1 showed right-hemisphere predominance; (3) There was no difference in the %PPI among regions (prefrontal/frontal/central) and hemispheres (midline/left/right); and (4) the Change-N1 amplitude and its PPI at prefrontal electrodes were positively correlated with those at the frontal electrodes. These results support the use of Change-N1 and its PPI as a tool to evaluate the change detection sensitivity and inhibitory function in individuals. The use of prefrontal electrodes can be an option for a screening test.


Assuntos
Potenciais Evocados Auditivos , Inibição Neural , Adulto , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Filtro Sensorial
2.
Neurosci Res ; 170: 195-200, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32702384

RESUMO

Change-N1 peaking 90-180 ms after changes in a sound feature of a continuous sound is clearly attenuated by a preceding change stimulus (called a "prepulse"). Here, we investigated the effects of a preceding decrease in sound pressure on the degree of inhibition of the subsequent Change-N1 amplitude. Using 100-Hz click train sounds, we obtained Change-N1s from 11 healthy volunteers. The two types of test stimuli were an abrupt 10-dB increase from the baseline (70 dB) and the insertion of a 0.45-ms inter-aural time difference in the middle of the sound. Three consecutive clicks at 30, 40, and 50 ms before the change onset that was used as a prepulse were weaker than the background by 5 or 10 dB. The Change-N1 elicited by the two test stimuli was attenuated more strongly by the weaker prepulse, which was not congruent with the theory that the inhibition of the subsequent sensory/sensory-motor processing depends on the sound pressure level of a prepulse. These results suggest that a change in any type of sound feature elicits a change-related response that is inhibited by any type of preceding change stimulus, which reflects auto-inhibition of the change-responding circuit.


Assuntos
Potenciais Evocados Auditivos , Reflexo de Sobressalto , Estimulação Acústica , Humanos , Inibição Psicológica , Inibição Pré-Pulso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...