Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Anat Embryol Cell Biol ; 224: 85-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551752

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition primarily characterised by alterations in social interaction and communication combined with the presence of restricted interests and stereotyped behaviours. Mutations in several genes have been associated with ASD resulting in the generation of corresponding mouse models. Here, we focus on the behavioural (social and stereotyped behaviours), functional and structural traits of mice with mutations in genes encoding defined synaptic proteins including adhesion proteins, scaffolding proteins and subunits of channels and receptors. A meta-analysis on ASD mouse models shows that they can be divided into two subgroups. Cluster I gathered models highly impaired in social interest, stereotyped behaviours, synaptic physiology and protein composition, while Cluster II regrouped much less impaired models, with typical social interactions. This distribution was not related to gene families. Even within the large panel of mouse models carrying mutations in Shank3, the number of mutated isoforms was not related to the severity of the phenotype. Our study points that the majority of structural or functional analyses were performed in the hippocampus. However, to robustly link the structural and functional impairments with the behavioural deficits observed, brain structures forming relevant nodes in networks involved in social and stereotyped behaviours should be targeted in the future. In addition, the characterisation of core ASD-like behaviours needs to be more detailed using new approaches quantifying the variations in social motivation, recognition and stereotyped behaviours.


Assuntos
Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Animais , Modelos Animais de Doenças , Camundongos , Fenótipo , Comportamento Social
2.
Front Mol Neurosci ; 10: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261056

RESUMO

Disruption of the human SHANK3 gene can cause several neuropsychiatric disease entities including Phelan-McDermid syndrome, autism spectrum disorder (ASD), and intellectual disability. Although, a wide array of neurobiological studies strongly supports a major role for SHANK3 in organizing the post-synaptic protein scaffold, the molecular processes at synapses of individuals harboring SHANK3 mutations are still far from being understood. In this study, we biochemically isolated the post-synaptic density (PSD) fraction from striatum and hippocampus of adult Shank3Δ11-/- mutant mice and performed ion-mobility enhanced data-independent label-free LC-MS/MS to obtain the corresponding PSD proteomes (Data are available via ProteomeXchange with identifier PXD005192). This unbiased approach to identify molecular disturbances at Shank3 mutant PSDs revealed hitherto unknown brain region specific alterations including a striatal decrease of several molecules encoded by ASD susceptibility genes such as the serine/threonine kinase Cdkl5 and the potassium channel KCa1.1. Being the first comprehensive analysis of brain region specific PSD proteomes from a Shank3 mutant line, our study provides crucial information on molecular alterations that could foster translational treatment studies for SHANK3 mutation-associated synaptopathies and possibly also ASD in general.

3.
Artigo em Inglês | MEDLINE | ID: mdl-27252646

RESUMO

The postsynaptic density or PSD is a submembranous compartment containing a wide array of proteins that contribute to both morphology and function of excitatory glutamatergic synapses. In this study, we have analyzed functional aspects of the Fezzin ProSAP-interacting protein 1 (ProSAPiP1), an interaction partner of the well-known PSD proteins Shank3 and SPAR. Using lentiviral-mediated overexpression and knockdown of ProSAPiP1, we found that this protein is dispensable for the formation of both pre- and postsynaptic specializations per se. We further show that ProSAPiP1 regulates SPAR levels at the PSD and the maturation of dendritic spines. In line with previous findings on the ProSAPiP1 homolog PSD-Zip70, we conclude that Fezzins essentially contribute to the maturation of excitatory spine synapses.

4.
Front Cell Neurosci ; 10: 106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199660

RESUMO

Members of the Shank family of multidomain proteins (Shank1, Shank2, and Shank3) are core components of the postsynaptic density (PSD) of excitatory synapses. At synaptic sites Shanks serve as scaffolding molecules that cluster neurotransmitter receptors as well as cell adhesion molecules attaching them to the actin cytoskeleton. In this study we investigated the synapse specific localization of Shank1-3 and focused on well-defined synaptic contacts within the hippocampal formation. We found that all three family members are present only at VGLUT1-positive synapses, which is particularly visible at mossy fiber contacts. No costaining was found at VGLUT2-positive contacts indicating that the molecular organization of VGLUT2-associated PSDs diverges from classical VGLUT1-positive excitatory contacts in the hippocampus. In light of SHANK mutations in neuropsychiatric disorders, this study indicates which glutamatergic networks within the hippocampus will be primarily affected by shankopathies.

5.
J Neurochem ; 137(1): 26-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26725465

RESUMO

Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease.


Assuntos
Axônios/metabolismo , Hipocampo/citologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Cones de Crescimento/química , Células HEK293 , Hipocampo/metabolismo , Humanos , Técnicas Analíticas Microfluídicas , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Neuritos/química , Neurogênese , Neurônios/metabolismo , Neurônios/ultraestrutura , Cultura Primária de Células , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Frações Subcelulares/química
6.
J Neurochem ; 136(1): 28-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26364583

RESUMO

Rap GTPase-activating proteins (RapGAPs) are essential for synaptic function as they tightly regulate synaptic Rap signaling. Among the most abundant synaptic RapGAPs in brain are the Spine-associated RapGAPs (SPARs) Sipa1l1/SPAR and Sipa1l2/SPAR2, whereas nothing has been reported on Sipa1l3/SPAR3. In this study, we show that Sipa1l3/SPAR3 is conserved across species, has a distinct expression pattern in the developing rat brain and is localized at excitatory postsynapses. We further demonstrate that the Sipa1l3/SPAR3 C-terminus is required for postsynaptic targeting and represents an interaction module for Fezzins such as ProSAPiP1/Lzts3, a binding partner of the postsynaptic scaffold protein Shank3. Taken together, our data imply that Sipa1l3/SPAR3 is a hitherto unknown synaptic RapGAP, which is targeted to postsynaptic specializations and interacts with Fezzins. Spine-associated RapGAPs (SPARs) are essential modulators of synaptic signaling. Our study is the first to characterize the SPAR family member Sipa1l3/SPAR3 in neuronal tissue. We show that Sipa1l3/SPAR3 is conserved across species, has a distinct expression pattern in brain and is localized to excitatory postsynapses via its C-terminus, which represents an interaction module for other postsynaptic proteins including the Fezzin ProSAPiP1/Lzts3.


Assuntos
Proteínas de Transporte/biossíntese , Proteínas Ativadoras de GTPase/biossíntese , Proteínas de Membrana/biossíntese , Sinapses/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Animais , Encéfalo/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cães , Feminino , Humanos , Masculino , Camundongos , Pan troglodytes , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
7.
FEBS Lett ; 587(5): 522-7, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23357029

RESUMO

Large scale screening of libraries consisting of natural and small molecules led to the identification of many small molecule inhibitors repressing Wnt/ß-Catenin signaling. However, targeted synthesis of novel Wnt pathway inhibitors has been rarely described. We developed a modular and expedient way to create the aromatic ring system with an aliphatic ring in between. Our synthesis opens up the possibility, in principle, to substitute all positions at the ring system with any desired substituent. Here, we tested five different haloquinone analogs carrying methoxy- and hydroxy-groups at different positions. Bona fide Wnt activity assays in cell culture and in Xenopus embryos revealed that two of these compounds act as potent inhibitors of aberrant activated Wnt/ß-Catenin signaling.


Assuntos
Antineoplásicos/síntese química , Fenantrenos/síntese química , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Proteína Axina/genética , Proteína Axina/metabolismo , Blastômeros/efeitos dos fármacos , Blastômeros/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HEK293 , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Fenantrenos/farmacologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA