Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Trials ; 25(1): 120, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355627

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) leads to progressive renal cyst formation and loss of kidney function in most patients. Vasopressin 2 receptor antagonists (V2RA) like tolvaptan are currently the only available renoprotective agents for rapidly progressive ADPKD. However, aquaretic side effects substantially limit their tolerability and therapeutic potential. In a preliminary clinical study, the addition of hydrochlorothiazide (HCT) to tolvaptan decreased 24-h urinary volume and appeared to increase renoprotective efficacy. The HYDRO-PROTECT study will investigate the long-term effect of co-treatment with HCT on tolvaptan efficacy (rate of kidney function decline) and tolerability (aquaresis and quality of life) in patients with ADPKD. METHODS: The HYDRO-PROTECT study is an investigator-initiated, multicenter, double-blind, placebo-controlled, randomized clinical trial. The study is powered to enroll 300 rapidly progressive patients with ADPKD aged ≥ 18 years, with an eGFR of > 25 mL/min/1.73 m2, and on stable treatment with the highest tolerated dose of tolvaptan in routine clinical care. Patients will be randomly assigned (1:1) to daily oral HCT 25 mg or matching placebo treatment for 156 weeks, in addition to standard care. OUTCOMES: The primary study outcome is the rate of kidney function decline (expressed as eGFR slope, in mL/min/1.73 m2 per year) in HCT versus placebo-treated patients, calculated by linear mixed model analysis using all available creatinine values from week 12 until the end of treatment. Secondary outcomes include changes in quality-of-life questionnaire scores (TIPS, ADPKD-UIS, EQ-5D-5L, SF-12) and changes in 24-h urine volume. CONCLUSION: The HYDRO-PROTECT study will demonstrate whether co-treatment with HCT can improve the renoprotective efficacy and tolerability of tolvaptan in patients with ADPKD.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Tolvaptan/efeitos adversos , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Hidroclorotiazida/efeitos adversos , Qualidade de Vida , Taxa de Filtração Glomerular , Antagonistas dos Receptores de Hormônios Antidiuréticos/efeitos adversos , Rim , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
2.
Clin Kidney J ; 17(1): sfad260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213489

RESUMO

Backgound: Branchiootorenal (BOR) syndrome is an autosomal dominant disorder caused by pathogenic EYA1 variants and clinically characterized by auricular malformations with hearing loss, branchial arch anomalies, and congenital anomalies of the kidney and urinary tract. BOR phenotypes are highly variable and heterogenous. While random monoallelic expression is assumed to explain this phenotypic heterogeneity, the potential role of modifier genes has not yet been explored. Methods: Through thorough phenotyping and exome sequencing, we studied one family with disease presentation in at least four generations in both clinical and genetic terms. Functional investigation of the single associated EYA1 variant c.1698+1G>A included splice site analysis and assessment of EYA1 distribution in patient-derived fibroblasts. The candidate modifier gene CYP51A1 was evaluated by histopathological analysis of murine Cyp51+/- and Cyp51-/- kidneys. As the gene encodes the enzyme lanosterol 14α-demethylase, we assessed sterol intermediates in patient blood samples as well. Results: The EYA1 variant c.1698+1G>A resulted in functional deletion of the EYA domain by exon skipping. The EYA domain mediates protein-protein interactions between EYA1 and co-regulators of transcription. EYA1 abundance was reduced in the nuclear compartment of patient-derived fibroblasts, suggesting impaired nuclear translocation of these protein complexes. Within the affected family, renal phenotypes spanned from normal kidney function in adulthood to chronic kidney failure in infancy. By analyzing exome sequencing data for variants that potentially play roles as genetic modifiers, we identified a canonical splice site alteration in CYP51A1 as the strongest candidate variant. Conclusion: In this study, we demonstrate pathogenicity of EYA1 c.1698+1G>A, propose a mechanism for dysfunction of mutant EYA1, and conjecture CYP51A1 as a potential genetic modifier of renal involvement in BOR syndrome.

3.
Curr Opin Nephrol Hypertens ; 33(2): 231-237, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240263

RESUMO

PURPOSE OF REVIEW: We aimed to critically evaluate how the establishment of genotype-based treatment for cystinuria has been hampered due to the large number of variants of unknown significance (VUS) within the disease causing genes as well as challenges in accessing a large enough sample size for systematic analysis of endpoint parameters that truly reflect disease severity. This review further discusses how to overcome these hurdles with the establishment of a cystinuria-specific refinement of the current American College of Medical Genetics and Genomics (ACMG)-criteria of variant interpretation. RECENT FINDINGS: Novel tools such as AlphaMissense combined with the establishment of a refined ACMG criterion will play a significant role in classifying VUS within the responsible disease genes SLC3A1 (rBAT) and SLC7A9 (BAT1). This will also be essential in elucidating the role of promising candidate genes, such as SLC7A13 (AGT1), which have been derived from murine model systems and still need further research to determine if they are involved in human cystinuria. SUMMARY: Cystinuria was one of the first disorders to receive a gene-based classification, nonetheless, the clinically actionable implications of genetic diagnostics is still minor. This is due to poorly characterized genotype-phenotype correlations which results in a lack of individualized (genotype-) based management and metaphylaxis.


Assuntos
Cistinúria , Humanos , Animais , Camundongos , Cistinúria/diagnóstico , Cistinúria/genética , Cistinúria/terapia , Genótipo , Mutação
4.
Gastroenterology ; 166(5): 902-914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101549

RESUMO

BACKGROUND & AIMS: Autosomal dominant polycystic liver disease is a rare condition with a female preponderance, based mainly on pathogenic variants in 2 genes, PRKCSH and SEC63. Clinically, autosomal dominant polycystic liver disease is characterized by vast heterogeneity, ranging from asymptomatic to highly symptomatic hepatomegaly. To date, little is known about the prediction of disease progression at early stages, hindering clinical management, genetic counseling, and the design of randomized controlled trials. To improve disease prognostication, we built a consortium of European and US centers to recruit the largest cohort of patients with PRKCSH and SEC63 liver disease. METHODS: We analyzed an international multicenter cohort of 265 patients with autosomal dominant polycystic liver disease harboring pathogenic variants in PRKCSH or SEC63 for genotype-phenotype correlations, including normalized age-adjusted total liver volumes and polycystic liver disease-related hospitalization (liver event) as primary clinical end points. RESULTS: Classifying individual total liver volumes into predefined progression groups yielded predictive risk discrimination for future liver events independent of sex and underlying genetic defects. In addition, disease severity, defined by age at first liver event, was considerably more pronounced in female patients and patients with PRKCSH variants than in those with SEC63 variants. A newly developed sex-gene score was effective in distinguishing mild, moderate, and severe disease, in addition to imaging-based prognostication. CONCLUSIONS: Both imaging and clinical genetic scoring have the potential to inform patients about the risk of developing symptomatic disease throughout their lives. The combination of female sex, germline PRKCSH alteration, and rapid total liver volume progression is associated with the greatest odds of polycystic liver disease-related hospitalization.


Assuntos
Hospitalização , Hepatopatias , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação ao Cálcio , Cistos/genética , Cistos/diagnóstico por imagem , Cistos/patologia , Progressão da Doença , Europa (Continente) , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Glucosidases/genética , Hepatomegalia/genética , Hepatomegalia/diagnóstico por imagem , Hospitalização/estatística & dados numéricos , Fígado/patologia , Fígado/diagnóstico por imagem , Hepatopatias/genética , Hepatopatias/patologia , Hepatopatias/diagnóstico por imagem , Chaperonas Moleculares , Tamanho do Órgão , Prognóstico , Medição de Risco , Fatores de Risco , Proteínas de Ligação a RNA , Índice de Gravidade de Doença , Fatores Sexuais , Estados Unidos/epidemiologia
5.
Kidney Int ; 104(5): 882-885, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863636

RESUMO

Urinary stone disease is based on gene-environment interaction with an almost 50% heritability. Despite all efforts from exome-sequencing and genome-wide association studies, the genetic factors making up for observed heritability have been incompletely characterized. The study by Sadeghi-Alavijeh et al. leverages the invaluable resources of the 100,000 Genomes Project and the UK Biobank to identify heterozygous rare variants in the phosphate transporter SLC34A3 as a significant factor of urinary stone disease, challenging the traditional concept of Mendelian inheritance.


Assuntos
Cálculos Urinários , Urolitíase , Doenças Urológicas , Humanos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Interação Gene-Ambiente , Cálculos Urinários/genética , Urolitíase/genética
6.
Nutrients ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432176

RESUMO

Apart from increased fluid intake, patients with kidney stone disease (KSD) due to renal phosphate wasting require specific metaphylaxis. NaPi2a, NaPi2c, and NHERF1 regulate plasma phosphate concentration by reabsorbing phosphate in proximal kidney tubules and have been found altered in monogenic hypophosphatemia with a risk of KSD. In this study, we aimed at assessing the combined genetic alterations impacting NaPi2a, NaPi2c, and NHERF1. Therefore, we screened our hereditary KSD registry for cases of oligo- and digenicity, conducted reverse phenotyping, and undertook functional studies. As a result, we identified three patients from two families with digenic alterations in NaPi2a, NaPi2c, and NHERF1. In family 1, the index patient, who presented with severe renal calcifications and a bone mineralization disorder, carried digenic alterations affecting both NaPi transporter 2a and 2c. Functional analysis confirmed an additive genetic effect. In family 2, the index patient presented with kidney function decline, distinct musculature-related symptoms, and intracellular ATP depletion. Genetically, this individual was found to harbor variants in both NaPi2c and NHERF1 pointing towards genetic interaction. In summary, digenicity and gene dosage are likely to impact the severity of renal phosphate wasting and should be taken into account in terms of metaphylaxis through phosphate substitution.


Assuntos
Doenças Ósseas , Calcinose , Cálculos Renais , Humanos , Cálculos Renais/genética , Calcificação Fisiológica , Dosagem de Genes
7.
Sci Rep ; 13(1): 9029, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270618

RESUMO

The risk of enteric hyperoxaluria is significantly increased after malabsorptive bariatric surgery (MBS). However, its underlying determinants are only poorly characterized. In this case-control study, we aimed at identifying clinical and genetic factors to dissect their individual contributions to the development of post-surgical hyperoxaluria. We determined the prevalence of hyperoxaluria and nephrolithiasis after MBS by 24-h urine samples and clinical questionnaires at our obesity center. Both hyperoxaluric and non-hyperoxaluric patients were screened for sequence variations in known and candidate genes implicated in hyperoxaluria (AGXT, GRHPR, HOGA1, SLC26A1, SLC26A6, SLC26A7) by targeted next generation sequencing (tNGS). The cohort comprised 67 patients, 49 females (73%) and 18 males (27%). While hyperoxaluria was found in 29 patients (43%), only one patient reported postprocedural nephrolithiasis within 41 months of follow-up. Upon tNGS, we did not find a difference regarding the burden of (rare) variants between hyperoxaluric and non-hyperoxaluric patients. However, patients with hyperoxaluria showed significantly greater weight loss accompanied by markers of intestinal malabsorption compared to non-hyperoxaluric controls. While enteric hyperoxaluria is very common after MBS, genetic variation of known hyperoxaluria genes contributes little to its pathogenesis. In contrast, the degree of postsurgical weight loss and levels of malabsorption parameters may allow for predicting the risk of enteric hyperoxaluria and consecutive kidney stone formation.


Assuntos
Cirurgia Bariátrica , Hiperoxalúria , Cálculos Renais , Masculino , Feminino , Humanos , Estudos de Casos e Controles , Hiperoxalúria/genética , Hiperoxalúria/complicações , Cirurgia Bariátrica/efeitos adversos , Cálculos Renais/complicações , Redução de Peso , Variação Genética
8.
Am J Hum Genet ; 110(6): 998-1007, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207645

RESUMO

While common obesity accounts for an increasing global health burden, its monogenic forms have taught us underlying mechanisms via more than 20 single-gene disorders. Among these, the most common mechanism is central nervous system dysregulation of food intake and satiety, often accompanied by neurodevelopmental delay (NDD) and autism spectrum disorder. In a family with syndromic obesity, we identified a monoallelic truncating variant in POU3F2 (alias BRN2) encoding a neural transcription factor, which has previously been suggested as a driver of obesity and NDD in individuals with the 6q16.1 deletion. In an international collaboration, we identified ultra-rare truncating and missense variants in another ten individuals sharing autism spectrum disorder, NDD, and adolescent-onset obesity. Affected individuals presented with low-to-normal birth weight and infantile feeding difficulties but developed insulin resistance and hyperphagia during childhood. Except for a variant leading to early truncation of the protein, identified variants showed adequate nuclear translocation but overall disturbed DNA-binding ability and promotor activation. In a cohort with common non-syndromic obesity, we independently observed a negative correlation of POU3F2 gene expression with BMI, suggesting a role beyond monogenic obesity. In summary, we propose deleterious intragenic variants of POU3F2 to cause transcriptional dysregulation associated with hyperphagic obesity of adolescent onset with variable NDD.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Síndrome de Prader-Willi , Adolescente , Humanos , Transtorno do Espectro Autista/genética , Hiperfagia/genética , Hiperfagia/complicações , Transtornos do Neurodesenvolvimento/genética , Obesidade/complicações , Síndrome de Prader-Willi/complicações , Síndrome de Prader-Willi/genética , Proteínas
9.
Front Immunol ; 14: 1094862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776892

RESUMO

Introduction: Antibody mediated rejection (ABMR) is the most common cause of long-term allograft loss in kidney transplantation (KT). Therefore, a low human leukocyte antigen (HLA) mismatch (MM) load is favorable for KT outcomes. Hitherto, serological or low-resolution molecular HLA typing have been adapted in parallel. Here, we aimed to identify previously missed HLA mismatches and corresponding antibodies by high resolution HLA genotyping in a living-donor KT cohort. Methods: 103 donor/recipient pairs transplanted at the University of Leipzig Medical Center between 1998 and 2018 were re-typed using next generation sequencing (NGS) of the HLA loci -A, -B, -C, -DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1. Based on these data, we compiled HLA MM counts for each pair and comparatively evaluated genomic HLA-typing with pre-transplant obtained serological/low-resolution HLA (=one-field) typing results. NGS HLA typing (=two-field) data was further used for reclassification of de novo HLA antibodies as "donor-specific". Results: By two-field HLA re-typing, we were able to identify additional MM in 64.1% (n=66) of cases for HLA loci -A, -B, -C, -DRB1 and -DQB1 that were not observed by one-field HLA typing. In patients with biopsy proven ABMR, two-field calculated MM count was significantly higher than by one-field HLA typing. For additional typed HLA loci -DRB345, -DQA1, -DPA1, and -DPB1 we observed 2, 26, 3, and 23 MM, respectively. In total, 37.3% (69/185) of de novo donor specific antibodies (DSA) formation was directed against these loci (DRB345 ➔ n=33, DQA1 ➔ n=33, DPA1 ➔ n=1, DPB1 ➔ n=10). Conclusion: Our results indicate that two-field HLA typing is feasible and provides significantly more sensitive HLA MM recognition in living-donor KT. Furthermore, accurate HLA typing plays an important role in graft management as it can improve discrimination between donor and non-donor HLA directed cellular and humoral alloreactivity in the long range. The inclusion of additional HLA loci against which antibodies can be readily detected, HLA-DRB345, -DQA1, -DQB1, -DPA1, and -DPB1, will allow a more precise virtual crossmatch and better prediction of potential DSA. Furthermore, in living KT, two-field HLA typing could contribute to the selection of the immunologically most suitable donors.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe II/genética , Teste de Histocompatibilidade/métodos , Cadeias beta de HLA-DQ/genética , Genômica
10.
Eur J Hum Genet ; 31(11): 1300-1308, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36807342

RESUMO

Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet known to be involved in kidney disease. We have developed KidneyNetwork, that utilizes tissue-specific expression to inform candidate gene prioritization specifically for kidney diseases. KidneyNetwork is a novel method constructed by integrating a kidney RNA-sequencing co-expression network of 878 samples with a multi-tissue network of 31,499 samples. It uses expression patterns and established gene-phenotype associations to predict which genes could be related to what (disease) phenotypes in an unbiased manner. We applied KidneyNetwork to rare variants in exome sequencing data from 13 kidney disease patients without a genetic diagnosis to prioritize candidate genes. KidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) phenotypes for disease-associated genes. The intersection of prioritized genes with genes carrying rare variants in a patient with kidney and liver cysts identified ALG6 as plausible candidate gene. We strengthen this plausibility by identifying ALG6 variants in several cystic kidney and liver disease cases without alternative genetic explanation. We present KidneyNetwork, a publicly available kidney-specific co-expression network with optimized gene-phenotype predictions for kidney disease phenotypes. We designed an easy-to-use online interface that allows clinicians and researchers to use gene expression and co-regulation data and gene-phenotype connections to accelerate advances in hereditary kidney disease diagnosis and research. TRANSLATIONAL STATEMENT: Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes not yet known to be involved in kidney disease, making it difficult to interpret the relevance of these variants. This reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork can aid the interpretation of genetic variants and can therefore be of value in translational nephrogenetics and help improve the diagnostic yield in kidney disease patients.


Assuntos
Doenças Renais Císticas , Nefropatias , Hepatopatias , Humanos , Rim , Fenótipo , Expressão Gênica
11.
Genet Med ; 25(3): 100351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571463

RESUMO

PURPOSE: Nephrolithiasis (NL) affects 1 in 11 individuals worldwide, leading to significant patient morbidity. NL is associated with nephrocalcinosis (NC), a risk factor for chronic kidney disease. Causative genetic variants are detected in 11% to 28% of NL and/or NC, suggesting that additional NL/NC-associated genetic loci await discovery. Therefore, we employed genomic approaches to discover novel genetic forms of NL/NC. METHODS: Exome sequencing and directed sequencing of the OXGR1 locus were performed in a worldwide NL/NC cohort. Putatively deleterious, rare OXGR1 variants were functionally characterized. RESULTS: Exome sequencing revealed a heterozygous OXGR1 missense variant (c.371T>G, p.L124R) cosegregating with calcium oxalate NL and/or NC disease in an autosomal dominant inheritance pattern within a multigenerational family with 5 affected individuals. OXGR1 encodes 2-oxoglutarate (α-ketoglutarate [AKG]) receptor 1 in the distal nephron. In response to its ligand AKG, OXGR1 stimulates the chloride-bicarbonate exchanger, pendrin, which also regulates transepithelial calcium transport in cortical connecting tubules. Strong amino acid conservation in orthologs and paralogs, severe in silico prediction scores, and extreme rarity in exome population databases suggested that the variant was deleterious. Interrogation of the OXGR1 locus in 1107 additional NL/NC families identified 5 additional deleterious dominant variants in 5 families with calcium oxalate NL/NC. Rare, potentially deleterious OXGR1 variants were enriched in patients with NL/NC compared with Exome Aggregation Consortium controls (χ2 = 7.117, P = .0076). Wild-type OXGR1-expressing Xenopus oocytes exhibited AKG-responsive Ca2+ uptake. Of 5 NL/NC-associated missense variants, 5 revealed impaired AKG-dependent Ca2+ uptake, demonstrating loss of function. CONCLUSION: Rare, dominant loss-of-function OXGR1 variants are associated with recurrent calcium oxalate NL/NC disease.


Assuntos
Nefrolitíase , Receptores Purinérgicos P2 , Humanos , Oxalato de Cálcio , Nefrolitíase/genética , Mutação de Sentido Incorreto/genética , Transportadores de Sulfato/genética , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo
12.
JHEP Rep ; 4(11): 100579, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36246085

RESUMO

Background & Aims: Polycystic liver disease (PLD) manifests as numerous fluid-filled cysts scattered throughout the liver parenchyma. PLD most commonly develops in females, either as an extra-renal manifestation of autosomal-dominant polycystic kidney disease (ADPKD) or as isolated autosomal-dominant polycystic liver disease (ADPLD). Despite known genetic causes, clinical variability challenges patient counselling and timely risk prediction is hampered by a lack of genotype-phenotype correlations and prognostic imaging classifications. Methods: We performed targeted next-generation sequencing and multiplex ligation-dependent probe amplification to identify the underlying genetic defect in a cohort of 80 deeply characterized patients with PLD. Identified genotypes were correlated with total liver and kidney volume (assessed by CT or MRI), organ function, co-morbidities, and clinical endpoints. Results: Monoallelic diagnostic variants were identified in 60 (75%) patients, 38 (48%) of which pertained to ADPKD-gene variants (PKD1, PKD2, GANAB) and 22 (27%) to ADPLD-gene variants (PRKCSH, SEC63). Disease severity defined by age at waitlisting for liver transplantation and first PLD-related hospitalization was significantly more pronounced in mutation carriers compared to patients without genetic diagnoses. While current imaging classifications proved unable to differentiate between severe and moderate courses, grouping by estimated age-adjusted total liver volume progression yielded significant risk discrimination. Conclusion: This study underlines the predictive value of providing a molecular diagnosis for patients with PLD. In addition, we propose a novel risk-classification model based on age- and height-adjusted total liver volume that could improve individual prognostication and personalized clinical management. Lay summary: Polycystic liver disease (PLD) is a highly variable condition that can be asymptomatic or severe. However, it is currently difficult to predict clinical outcomes such as hospitalization, symptom burden, and need for transplantation in individual patients. In the current study, we aimed to investigate the clinical value of genetic confirmation and an age-adjusted total liver volume classification for individual disease prediction. While genetic confirmation generally pointed to more severe disease, estimated age-adjusted increases in liver volume could be useful for predicting clinical outcomes.

13.
PLoS One ; 17(9): e0273671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054109

RESUMO

BACKGROUND: In nephrotic range proteinuria of adult-onset, kidney biopsy is the diagnostic gold standard in determining the underlying cause of disease. However, in low grade or subnephrotic proteinuria the diagnostic value of kidney biopsy as first-line diagnostics is less well established. METHODS: We conducted a retrospective analysis of all native kidney biopsies at our institution (n = 639) between 01/2012 and 05/2021 for comparison of histological diagnoses and clinical outcomes stratified by amount of proteinuria at the time of kidney biopsy: A: <300mg/g creatinine (low grade), B: 300-3500mg/g creatinine (subnephrotic), C >3500mg/g creatinine (nephrotic). RESULTS: Nephrotic range proteinuria was associated with the highest frequency (49.3%) of primary glomerulopathies followed by subnephrotic (34.4%) and low grade proteinuria (37.7%). However, within the subnephrotic group, the amount of proteinuria at kidney biopsy was linearly associated with renal and overall survival (HR 1.05 per Δ100mg protein/g creatinine (95% CI: 1.02-1.09, p = 0.001)) independent of present histological diagnoses and erythrocyturia. CONCLUSION: Frequency of primary glomerulopathies supports to perform kidney biopsy in patients with subnephrotic proteinuria. These patients have a substantial risk of ESKD and death upon follow-up. Therefore, diagnostic accuracy including histopathology is essential to guide personalized treatment and avert detrimental courses.


Assuntos
Nefropatias , Síndrome Nefrótica , Adulto , Biópsia/efeitos adversos , Creatinina , Humanos , Rim/patologia , Nefropatias/patologia , Síndrome Nefrótica/patologia , Proteinúria/patologia , Estudos Retrospectivos
14.
Am J Med Genet C Semin Med Genet ; 190(3): 279-288, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35923129

RESUMO

Kidney stone disease (KSD) is a prevalent condition associated with high morbidity, frequent recurrence, and progression to chronic kidney disease (CKD). The etiology is multifactorial, depending on environmental and genetic factors. Although monogenic KSD is frequent in children, unbiased prevalence data of heritable forms in adults is scarce. Within 2 years of recruitment, all patients hospitalized for urological kidney stone intervention at our center were consecutively enrolled for targeted next generation sequencing (tNGS). Additionally, clinical and metabolic assessments were performed for genotype-phenotype analyses. The cohort comprised 155 (66%) males and 81 (34%) females, with a mean age at first stone of 47 years (4-86). The diagnostic yield of tNGS was 6.8% (16/236), with cystinuria (SLC3A1, SLC7A9), distal renal tubular acidosis (SLC4A1), and renal phosphate wasting (SLC34A1, SLC9A3R1) as underlying hereditary disorders. While metabolic syndrome traits were associated with late-onset KSD, hereditary KSD was associated with increased disease severity in terms of early-onset, frequent recurrence, mildly impaired kidney function, and common bilateral affection. By employing systematic genetic analysis to a less biased cohort of common adult kidney stone formers, we demonstrate its diagnostic value for establishing the underlying disorder in a distinct proportion. Factors determining pretest probability include age at first stone (<40 years), frequent recurrence, mild CKD, and bilateral KSD.


Assuntos
Cálculos Renais , Insuficiência Renal Crônica , Masculino , Feminino , Humanos , Cálculos Renais/genética , Cálculos Renais/diagnóstico , Testes Genéticos , Fenótipo , Probabilidade
15.
Genes Dis ; 9(5): 1301-1314, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35873018

RESUMO

Formation of claudin-10 based tight junctions (TJs) is paramount to paracellular Na+ transport in multiple epithelia. Sequence variants in CLDN10 have been linked to HELIX syndrome, a salt-losing tubulopathy with altered handling of divalent cations accompanied by dysfunctional salivary, sweat, and lacrimal glands. Here, we investigate molecular basis and phenotypic consequences of a newly identified homozygous CLDN10 variant that translates into a single amino acid substitution within the fourth transmembrane helix of claudin-10. In addition to hypohidrosis (H), electrolyte (E) imbalance with impaired urine concentrating ability, and hypolacrimia (L), phenotypic findings include altered salivary electrolyte composition and amelogenesis imperfecta but neither ichthyosis (I) nor xerostomia (X). Employing cellular TJ reconstitution assays, we demonstrate perturbation of cis- and trans-interactions between mutant claudin-10 proteins. Ultrastructures of reconstituted TJ strands show disturbed continuity and reduced abundance in the mutant case. Throughout, both major isoforms, claudin-10a and claudin-10b, are differentially affected with claudin-10b showing more severe molecular alterations. However, expression of the mutant in renal epithelial cells with endogenous TJs results in wild-type-like ion selectivity and conductivity, indicating that aberrant claudin-10 is generally capable of forming functional paracellular channels. Thus, mutant proteins prove pathogenic by compromising claudin-10 TJ strand assembly. Additional ex vivo investigations indicate their insertion into TJs to occur in a tissue-specific manner.

16.
Clin Kidney J ; 15(7): 1333-1339, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35756743

RESUMO

Background: Congenital abnormalities of the kidney and urinary tract (CAKUT) are characterized by vast phenotypic heterogeneity and incomplete penetrance. Although CAKUT represent the main cause of pediatric chronic kidney disease, only ∼20% can be explained by single-gene disorders to date. While pathogenic alterations of PBX1 were recently associated with a severe form of syndromic CAKUT, most CAKUT patients survive childhood and adolescence to reach end-stage kidney disease later in life. Although somatic mosaicism is known to attenuate severity in other kidney diseases, it has rarely been described or systematically been assessed in CAKUT. Methods: We conducted an in-depth phenotypic characterization of the index patient and his family using targeted next-generation sequencing, segregation analysis and workup of mosaicism with DNA isolated from peripheral blood cells, oral mucosa and cultured urinary renal epithelial cells (URECs). Results: Somatic mosaicism was identified in a 20-year-old male with sporadic but mild syndromic renal hypoplasia. He was found to carry a novel de novo truncating variant in PBX1 [c.992C>A, p.(Ser331*)]. This variant was detected in 26% of sequencing reads from blood cells, 50% from oral mucosa and 20% from cultured URECs. Conclusions: PBX1-associated CAKUT is characterized by a wealth of de novo mutations. As in de novo cases, mutations can occur intra- or post-zygotically and genetic mosaicism might represent a more common phenomenon in PBX1 disease, accounting for variable expressivity on a general basis. Consequently we suggest ruling out somatic mosaicism in sporadic CAKUT, notably in attenuated and atypical clinical courses.

17.
Kidney Int ; 101(5): 1039-1053, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227688

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.


Assuntos
Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Animais , Criança , Feminino , Humanos , Rim/patologia , Masculino , Camundongos , Sistema Urinário/patologia , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/diagnóstico , Proteínas Roundabout
18.
J Am Soc Nephrol ; 33(4): 699-717, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031570

RESUMO

BACKGROUND: The tight junction proteins claudin-2 and claudin-10a form paracellular cation and anion channels, respectively, and are expressed in the proximal tubule. However, the physiologic role of claudin-10a in the kidney has been unclear. METHODS: To investigate the physiologic role of claudin-10a, we generated claudin-10a-deficient mice, confirmed successful knockout by Southern blot, Western blot, and immunofluorescence staining, and analyzed urine and serum of knockout and wild-type animals. We also used electrophysiologic studies to investigate the functionality of isolated proximal tubules, and studied compensatory regulation by pharmacologic intervention, RNA sequencing analysis, Western blot, immunofluorescence staining, and respirometry. RESULTS: Mice deficient in claudin-10a were fertile and without overt phenotypes. On knockout, claudin-10a was replaced by claudin-2 in all proximal tubule segments. Electrophysiology showed conversion from paracellular anion preference to cation preference and a loss of paracellular Cl- over HCO3- preference. As a result, there was tubular retention of calcium and magnesium, higher urine pH, and mild hypermagnesemia. A comparison with other urine and serum parameters under control conditions and sequential pharmacologic transport inhibition, and unchanged fractional lithium excretion, suggested compensative measures in proximal and distal tubular segments. Changes in proximal tubular oxygen handling and differential expression of genes regulating fatty acid metabolism indicated proximal tubular adaptation. Western blot and immunofluorescence revealed alterations in distal tubular transport. CONCLUSIONS: Claudin-10a is the major paracellular anion channel in the proximal tubule and its deletion causes calcium and magnesium hyper-reabsorption by claudin-2 redistribution. Transcellular transport in proximal and distal segments and proximal tubular metabolic adaptation compensate for loss of paracellular anion permeability.


Assuntos
Claudina-2 , Claudinas/metabolismo , Animais , Cátions/metabolismo , Túbulos Renais Proximais/metabolismo , Camundongos , Permeabilidade , Junções Íntimas/fisiologia
20.
PLoS One ; 16(7): e0254608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34252151

RESUMO

In this retrospective multicentric cohort study, we evaluate the potential benefits of a clinical decision support system (CDSS) for the automated detection of Acute kidney injury (AKI). A total of 80,389 cases, hospitalized from 2017 to 2019 at a tertiary care hospital (University of Leipzig Medical Center (ULMC)) and two primary care hospitals (Muldentalkliniken (MTL)) in Germany, were enrolled. AKI was defined and staged according to the Kidney disease: improving global outcomes (KDIGO) guidelines. Clinical and laboratory data was automatically collected from electronic patient records using the frameworks of the CDSS. In our cohort, we found an overall AKI incidence proportion of 12.1%. We identified 6,393/1,703/1,604 cases as AKI stage 1/2/3 (8.0%/2.1%/2.0%, respectively). Administrative coding with N17 (ICD-10-GM) was missing in 55.8% of all AKI cases with the potential for additional diagnosis related groups (DRG) reimbursement of 1,204,200 € in our study. AKI was associated with higher hospital mortality, increased length of hospitalisation and more frequent need of renal replacement therapy. A total of 19.1% of AKI cases (n = 1,848) showed progression to higher AKI stages (progressive AKI) during hospitalization. These cases presented with considerably longer hospitalization, higher rates of renal replacement therapy and increased mortality (p<0.001, respectively). Furthermore, progressive AKI was significantly associated with sepsis, shock, liver cirrhosis, myocardial infarction, and cardiac insufficiency. AKI, and especially its progression during hospitalization, is strongly associated with adverse outcomes. Our automated CDSS enables timely detection and bears potential to improve AKI outcomes, notably in cases of progressive AKI.


Assuntos
Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/patologia , Idoso , Progressão da Doença , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Incidência , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...