Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Curr Microbiol ; 81(1): 27, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041739

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) requires treatment with fluoroquinolone (FLQ) drugs, however, the excessive use of FLQ has led to the rise of extensively drug-resistant TB. In 2019, ~ 20% of total MDR-TB cases were estimated to be resistant to FLQ drugs. In the present study, we developed and evaluated the utility of high-resolution melt curve analysis (HRM) for the rapid detection of FLQ-resistant Mycobacterium tuberculosis for the first time directly from sputum samples. A reference plasmid library was generated for the most frequently observed mutations of gyrA gene and was used to discriminate between mutant and wild-type samples in the FLQ-HRM assay. The developed assay was evaluated on n = 25 MDR M. tuberculosis clinical isolates followed by validation on archived sputum DNA (n = 88) using DNA sequencing as a gold standard. The FLQ-HRM assay showed a 100% sensitivity [95% Confidence Interval (CI): 71.5 to 100] and specificity (95% CI: 39.7 to 100) in smear-positive category, and a sensitivity of 88.9% (95% CI: 77.3 to 95.8) with 84.2% (95% CI: 60.4 to 96.6) specificity in smear-negative category. The assay showed a high level of concordance of ~ 90% (κ = 0.74) with DNA sequencing, however, we were limited by the absence of phenotypic drug susceptibility testing data. In conclusion, HRM is a rapid, cost-effective (INR 150/USD 1.83) and closed-tube method for direct detection of FLQ resistance in sputum samples including direct smear-negative samples.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Isoniazida/farmacologia , Escarro/microbiologia , Rifampina/farmacologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Testes de Sensibilidade Microbiana , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
2.
Tuberculosis (Edinb) ; 142: 102369, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536090

RESUMO

Pleural tuberculosis (pTB) is a grave clinical challenge. A novel cell-free M. tuberculosis DNA (cfM.tb-DNA) probe-based-qPCR assay was developed for the diagnosis of pTB. Total cell-free DNA was extracted from pleural fluid (PF) and paired plasma samples and cfM.tb-DNA was quantified by probe-based qPCR targeting devR (109-bp) gene of M. tuberculosis in patients with pleural effusion. Patient categorization was done using 'Composite-Reference-Standard' formulated for the study. Assay cut-offs were determined from samples in the 'Development set' (n = 17; 'Definite & Probable' pTB; n = 9 and 'Non-TB'; n = 8) by ROC-curve analysis and applied to 'Validation set' (n = 112; 'Definite' pTB; n = 8, 'Probable' pTB; n = 34, 'Possible' pTB; n = 28 and 'Non-TB'; n = 42). cfM.tb-DNA qPCR had a sensitivity of 62.5% (95%CI; 24.4,91.4) in 'Definite' pTB category and 59.5% (95%CI; 43.2,74.3) in 'Definite & Probable' pTB category with 95.2% (95%CI; 83.8,99.4) specificity using PF. In plasma (n = 85), the assay had a sub-optimal sensitivity of 7.6% (95%CI; 0.95,25.1) with 88.2% (95%CI; 72.5,96.7) specificity in 'Definite & Probable' pTB group. Xpert MTB/RIF assay detected only six-samples in the 'Validation set'. Logistic regression analysis indicated that PF-cfM.tb-DNA qPCR provided incremental advantage over existing pTB diagnostic algorithms. To the best of our knowledge, this is the first report describing the utility of cfM.tb-DNA for pTB diagnosis in India.


Assuntos
Ácidos Nucleicos Livres , Mycobacterium tuberculosis , Tuberculose Pleural , Humanos , Mycobacterium tuberculosis/genética , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/microbiologia , Ácidos Nucleicos Livres/genética , Sensibilidade e Especificidade , Curva ROC
3.
Diagn Microbiol Infect Dis ; 107(1): 115973, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348159

RESUMO

In view of WHO's "End-TB" strategy, we developed a non-invasive, urine-based ELISA, targeting 2 Mycobacterium tuberculosis antigens namely MPT51 and MPT64 for extrapulmonary TB (EPTB) diagnosis. Suspected EPTB patients (n = 137) [Pleural TB, Abdominal TB and Tuberculous meningitis] were categorized in "Definite" EPTB (n = 10) [Xpert-MTB/RIF and/or culture-positive], "Probable" EPTB (n = 77) and "Non-EPTB" (n = 50) groups using defined composite reference standards. ROC-curves were generated using ELISA results of "Definite" EPTB and "Non-EPTB" groups for both antigens independently and cut-off values were selected to provide 86.3% (95%CI:73.3-94.2) specificity for MPT51 and 92% (95%CI:80.8-97.8) for MPT64. The sensitivity of MPT51-ELISA and MPT64-ELISA was 70% (95%CI:34.7-93.3) and 90% (95%CI:55.5-99.7) for "Definite" EPTB group and 32.5% (95%CI:22.2-44.1) and 30.8% (95%CI:20.8-42.2) for "Probable" EPTB group, respectively. Combining the results of both ELISAs showed a 100% (95%CI:69.1-100) sensitivity in "Definite" EPTB group and 41.6% (95%CI:30.4-53.4) in "Probable" EPTB group, with an 80% (95%CI:66.3-89.9) specificity. The results demonstrated the potential of urine-based ELISAs as screening tests for EPTB diagnosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose Extrapulmonar , Tuberculose Meníngea , Humanos , Sensibilidade e Especificidade , Curva ROC
4.
Tuberculosis (Edinb) ; 135: 102213, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35696959

RESUMO

Tuberculous Meningitis (TBM) diagnosis remains a grave challenge. We evaluated the utility of extracellular vesicles (EVs) as a source of cell-free transrenal-mycobacterial DNA (cf-Tr-MTB DNA) for TBM diagnosis from urine samples. We developed a qPCR-assay targeting a highly repetitive 36-bp sequence specific to Mycobacterium tuberculosis complex. EVs were isolated from urine samples of suspected TBM groups (n = 44) [categorized using composite reference standard as 'Definite' TBM (n = 8), 'Probable' TBM (n = 15), 'Possible' TBM (n = 21)] and 'Non-TBM' group (n = 26). cf-Tr-MTB DNA-based qPCR assay was applied to DNA isolated from EVs (EV-DNA) and EV-free-fraction (EV-free DNA). ROC-curves were generated using qPCR results of 'Definite' TBM and 'Non-TBM' category in both EV-DNA and EV-free DNA samples and cut-off values were selected to provide 100% (95%CI:69.1-100) specificity. The cf-Tr-MTB DNA assay gave a sensitivity of 54.5% (95%CI:38.8-69.6) for EV-DNA and 77.3% (95%CI:62.1-88.5) for EV-free DNA in the TBM group (n = 44). The combination of EV-DNA and EV-free DNA results (corresponding to performance cf-Tr MTB DNA assay in urine), gave an overall sensitivity of 81.8% (95%CI:67.2-91.8) in the TBM group. Our results confirmed EVs as one of the sources of cf-Tr-MTB DNA and we believe the cf-Tr-MTB DNA-based qPCR assay has a potential application for TBM diagnosis.


Assuntos
Ácidos Nucleicos Livres , Mycobacterium tuberculosis , Tuberculose Meníngea , Ácidos Nucleicos Livres/genética , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/genética , Tuberculose Meníngea/microbiologia
5.
Tuberculosis (Edinb) ; 134: 102206, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462326

RESUMO

The diagnosis of abdominal tuberculosis (aTB) is challenging and there is an urgent need for an accurate diagnostic test. We have developed a high affinity DNA aptamer against GlcB antigen of Mycobacterium tuberculosis (Mtb). We further compared the diagnostic utility of in-house-generated high affinity DNA aptamers and polyclonal antibodies against two Mtb antigens, namely GlcB and HspX, in ascitic fluid samples. These diagnostic reagents were assessed in patients (n = 94) who were categorized as 'Definite TB', 'Probable TB', 'Possible TB' (taken together as aTB) and 'Non-TB' disease. Receiver operating characteristic curves were used to derive cut-off values to provide ≥93% specificity. Aptamer Linked Immobilized Sorbent Assay (ALISA) for HspX and GlcB exhibited a sensitivity of ∼84% and 50%, respectively (p-value <0.01). In contrast, antibody-based ELISA exhibited a lower sensitivity of ∼18% and ∼28% for HspX and GlcB, respectively (p-value <0.0001 and p = 0.05 for HspX and GlcB ELISA vs. ALISA, respectively). HspX ALISA detected 32/38 aTB cases, while Xpert detected only 9 samples. In conclusion, HspX aptamer-based test was found to be superior to the other tests for diagnosing aTB and it nearly fulfils the sensitivity criteria of WHO's 'Target Product Profile' for extrapulmonary tuberculosis (sensitivity ≥80%, specificity 98%).


Assuntos
Aptâmeros de Nucleotídeos , Mycobacterium tuberculosis , Tuberculose , Antígenos de Bactérias/genética , Aptâmeros de Nucleotídeos/genética , Proteínas de Bactérias/genética , Humanos , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Tuberculose/diagnóstico
6.
Curr Microbiol ; 79(4): 110, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175411

RESUMO

In 2019, amongst half a million new rifampicin-resistant tuberculosis (TB) cases, 78% were multi drug-resistant TB (MDR-TB). Access to rapid and Universal-Drug susceptibility testing (DST) to patients in remote areas is a major challenge to combat drug-resistant TB. To overcome this challenge, we had recently reported the development of 'TB Concentration & Transport kit' for bio-safe ambient temperature transport of dried sputum on filter-paper (Trans-Filter). The present study was conducted to evaluate the utility of DNA extracted from sputum on Trans-Filter in a Multiplex PCR-based sequencing assay (Mol-DSTseq) for diagnosing drug-resistant TB. The developed Mol-DSTseq assays were standardized on Mycobacterium tuberculosis clinical isolates (n = 98) and further validated on DNA extracted from sputum on Trans-Filter (n = 100). Using phenotypic DST as gold standard, the Mol-DSTseq assay showed 100% (95% Confidence Interval [CI] 79.4-100%) and 73.3% (95% CI 54.1-87.7%) sensitivity for detecting rifampicin and isoniazid resistance with a specificity of 85.1% (95% CI 66.2-95.8%) and 100% (95% CI:82.3-100%), respectively. For fluoroquinolones and aminoglycosides, the Mol-DSTseq assay showed a sensitivity of 78.5% (95% CI 49.2-95.3%) and 66.6% (95% CI 9.4-99.1%) with a specificity of 88.2% (95% CI 72.5-96.7%) and 100% (95% CI 93.1-100%), respectively. The Mol-DSTseq assays exhibited a high concordance of ~ 83-96% (κ value: 0.65-0.81) with phenotypic DST for all drugs. In conclusion, the 'TB Concentration and Transport kit' was compatible with Mol-DSTseq assays and has the potential to provide 'Universal-DST' to patients residing in distant areas in high burden countries, like India for early initiation of anti-tubercular treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Humanos , Isoniazida , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
7.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350282

RESUMO

BACKGROUND: Near-patient access to appropriate tests is a major obstacle for the efficient diagnosis of tuberculosis (TB) and associated drug resistance. METHODS: We recently developed the "TB Concentration & Transport" kit for bio-safe, ambient-temperature transportation of dried sputum on Trans-Filter, and the "TB DNA Extraction" kit for DNA extraction from Trans-Filter for determining drug resistance by DNA sequencing. In the present study, we evaluated the compatibility of Kit-extracted DNA with Hain's line probe assays (LPAs), which are endorsed by National TB programmes for the detection of drug resistance in sputum collected from presumptive multidrug-resistant TB patients (n=207). RESULTS: Trans-Filter-extracted DNA was seamlessly integrated with the LPA protocol (Kit-LPA). The sensitivity of Kit-LPA for determining drug resistance was 83.3% for rifampicin (95% CI 52-98%), 77.7% for isoniazid (95% CI 52-94%), 85.7% for fluoroquinolones (95% CI 42-100%) and 66.6% for aminoglycosides (95% CI 9-99%), with a specificity range of 93.7% (95% CI 87-97) to 99.1% (95% CI 95-100) using phenotypic drug susceptibility testing (DST) as a reference standard. A high degree of concordance was noted between results obtained from Kit-LPA and LPA (99% to 100% (κ value: 0.83-1.0)). CONCLUSIONS: This study demonstrates successful integration of our developed kits with LPA. The adoption of these kits across Designated Microscopy Centres in India can potentially overcome the existing challenge of transporting infectious sputum at controlled temperature to centralised testing laboratories and can provide rapid near-patient cost-effective "Universal DST" services to TB subjects residing in remote areas.

8.
Clin Microbiol Infect ; 27(6): 911.e1-911.e7, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32835794

RESUMO

OBJECTIVES: The present study aimed to evaluate the performance of the 'TBDetect' kit-based bio-safe fluorescent microscopy filter (BioFM-Filter) microscopy in comparison with direct smear microscopy and culture for the detection of pulmonary tuberculosis (TB) in a multi-centric setting in India. METHODS: The TBDetect kit enables sputum concentration through filtration using the BioFM-Filter for improved and bio-safe smear microscopy. We evaluated the performance of the TBDetect kit in a six-site multi-centric validation study on sputum collected from 2086 presumptive TB patients. RESULTS: The combined positivity of TBDetect microscopy performed on these sputum samples was 20% (n = 417/2086) vs 16.1% of light-emitting diode fluorescence microscopy (LED-FM, n = 337/2086) and 16% of Ziehl Neelsen (ZN) smear microscopy (n = 333/2086). The increment in positivity of TBDetect over both LED-FM and ZN smears was significant (p < 0.001). The overall sensitivity of TBDetect for six sites was ~55% (202/367, 95% confidence interval (CI): 50, 60%) vs 52% (191/367, 95% CI: 47, 57%) for LED-FM (p 0.14) and 50.9% (187/367, 95% CI: 46, 56%) for ZN smear (p < 0.05), using Mycobacterium Growth Indicator Tube culture (MGIT, n = 1949, culture positive, n = 367) as the reference standard. A bio-safety evaluation at six sites confirmed efficient sputum disinfection by TBDetect; 99.95% samples (1873/1874) were sterile after 42 days of incubation. Scientists and technicians at the study sites indicated the ease of use and convenience of TBDetect microscopy during feedback. CONCLUSIONS: TBDetect added value to the smear microscopy test due to its improved performance, convenience and user safety. These findings indicate that equipment-free TBDetect technology has the potential to improve TB diagnosis in basic laboratory settings by leveraging on the existing nationwide network of designated microscopy centres and primary healthcare centres.


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
9.
PLoS One ; 15(8): e0238119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845896

RESUMO

Abdominal tuberculosis (ATB) continues to pose a major diagnostic challenge for clinicians due to its nonspecific clinical presentation, variable anatomical location and lack of sensitive diagnostic tools. In spite of the development of several assays till date; no single test has proved to be adequate for ATB diagnosis. In this study, we for the first time report the detection of circulating cell-free Mycobacterium tuberculosis (M. tuberculosis) DNA (cfMTB-DNA) in ascitic fluid (AF) samples and its utility in ATB diagnosis. Sixty-five AF samples were included in the study and processed for liquid culture, cytological, biochemical and molecular assays. A composite reference standard (CRS) was formulated to categorize the patients into 'Definite ATB' (M. tuberculosis culture positive, n = 2), 'Probable ATB' (n = 16), 'Possible ATB' (n = 13) and 'Non-TB' category (n = 34). Two molecular assays were performed, namely, the novel cfMTB-DNA qPCR assay targeting M. tuberculosis devR gene and Xpert MTB/RIF assay (Xpert), and their diagnostic accuracy was assessed using CRS as reference standard. Clinical features such as fever, loss of weight, abdominal distension and positive Mantoux were found to be strongly associated with ATB disease (p<0.05). cfMTB-DNA qPCR had a sensitivity of 66.7% (95% CI:40.9,86.7) with 97.1% specificity (95% CI:84.7,99.9) in 'Definite ATB' and 'Probable ATB' group collectively. The sensitivity increased to 70.9% (95% CI:51.9,85.8) in the combined 'Definite', 'Probable' and 'Possible' ATB group with similar specificity. The cfMTB-DNA qPCR assay performed significantly better than the Xpert assay which demonstrated a poor sensitivity of ≤16.7% with 100% (95% CI:89.7,100) specificity (p<0.001). We conclude that cfMTB-DNA qPCR assay is an accurate molecular test that can provide direct evidence of M. tuberculosis etiology and has promise to pave the way for improving ATB diagnosis.


Assuntos
Líquido Ascítico/química , Ácidos Nucleicos Livres/análise , DNA Bacteriano/análise , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Abdome/microbiologia , Abdome/patologia , Adolescente , Adulto , Idoso , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Tuberculose/patologia , Adulto Jovem
10.
Diagn Microbiol Infect Dis ; 96(4): 114995, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32037037

RESUMO

In GenoType MTBDRplus assay [line probe assay (LPA)], when Mycobacterium tuberculosis (M. tuberculosis) sample DNA fails to hybridize to at least 1 rpoB wild-type probe and any mutation probe, it is inferred as rifampin (RIF)-resistant. In this study, we sought to identify such 'inferred' mutations in M. tuberculosis isolates (n = 203) by rpoB gene sequencing and determined their association with phenotypic resistance. D516Y, H526N, L511P mutations were associated with both phenotypically sensitive (59%, n = 38/64) and resistant (23.7%, n = 33/139) antimicrobial susceptibility testing (AST) results, whereas S531W mutation was associated with only RIF-resistant isolates (33%, n = 46/139). These results demonstrated that, at standard drug concentrations, some 'inferred' mutations may be missed by RIF-AST (phenotypically sensitive). The use of LPA permits identification of these RIF-resistant isolates, and incorporation of additional mutation probes (e.g., S531W) could further increase LPA specificity. Further studies are needed to establish the significance of the type of 'inferred' mutation with clinical/treatment outcomes.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Escarro/microbiologia , Tuberculose/microbiologia
11.
Mol Ther Nucleic Acids ; 18: 661-672, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31704587

RESUMO

The successful management of tuberculosis (TB) requires efficient diagnosis and treatment. Further, the increasing prevalence of drug-resistant TB highlights the urgent need to develop novel inhibitors against both drug-susceptible and drug-resistant forms of disease. Malate synthase (MS), an enzyme of the glyoxylate pathway, plays a vital role in mycobacterial persistence, and therefore it is considered as an attractive target for novel anti-TB drug development. Recent studies have also ascribed an adhesin function to MS and established it as a potent diagnostic biomarker. In this study, a panel of Mycobacterium tuberculosis (Mtb) MS-specific single-stranded DNA aptamers was identified by Systematic Evolution of Ligands by EXponential enrichment (SELEX). The best-performing G-quadruplex-forming 44-mer aptamer, MS10, was optimized post-SELEX to generate an 11-mer aptamer, MS10-Trunc. This aptamer was characterized by various biochemical, biophysical, and in silico techniques. Its theranostic activity toward Mtb was established using enzyme inhibition, host cell binding, and invasion assays. MS10-Trunc aptamer exhibited high affinity for MS (equilibrium dissociation constant [KD] ∼19 pM) and displayed robust inhibition of MS enzyme activity with IC50 of 251.1 nM and inhibitor constant (Ki) of 230 nM. This aptamer blocked mycobacterial entry into host cells by binding to surface-associated MS. In addition, we have also demonstrated its application in the detection of tuberculous meningitis (TBM) in patients with sensitivity and specificity each of >97%.

12.
PLoS One ; 14(8): e0220967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31408508

RESUMO

India has the highest burden of Tuberculosis (TB) and multidrug-resistant TB (MDR-TB) worldwide. Innovative technology is the need of the hour to identify these cases that remain either undiagnosed or inadequately diagnosed due to the unavailability of appropriate tools at primary healthcare settings. We developed and evaluated 3 kits, namely 'TB Detect' (containing BioFM-Filter device), 'TB Concentration and Transport' (containing Trans-Filter device) and 'TB DNA Extraction' kits. These kits enable bio-safe equipment-free concentration of sputum on filters and improved fluorescence microscopy at primary healthcare centres, ambient temperature transport of dried inactivated sputum filters to central laboratories and molecular detection of drug resistance by PCR and DNA sequencing (Mol-DST). In a 2-site evaluation (n = 1190 sputum specimens) on presumptive TB patients, BioFM-Filter smear exhibited a significant increase in positivity of 7% and 4% over ZN smear and LED-FM smear (p<0.05), respectively and an increment in smear grade status (1+ or 2+ to 3+) of 16% over ZN smear and 20% over LED-FM smear. The sensitivity of Mol-DST in presumptive MDR-TB and XDR-TB cases (n = 148) was 90% for Rifampicin (95% confidence interval [CI], 78-96%), 84% for Isoniazid (95% CI, 72-92%), 83% for Fluoroquinolones (95% CI, 66-93%) and 75% for Aminoglycosides (95% CI, 35-97%), using phenotypic DST as the reference standard. Test specificity was 88-93% and concordance was ~89-92% (κ value 0.8-0.9). The patient-friendly kits described here address several of the existing challenges and are designed to provide 'Universal Access' to rapid TB diagnosis, including drug-resistant disease. Their utility was demonstrated by application to sputum at 2 sites in India. Our findings pave the way for larger studies in different point-of-care settings, including high-density urban areas and remote geographical locations.


Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Kit de Reagentes para Diagnóstico , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Antituberculosos/farmacologia , Fluoroquinolonas/farmacologia , Humanos , Índia , Isoniazida/farmacologia , Microscopia de Fluorescência , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
Int J Nanomedicine ; 14: 2103-2113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988611

RESUMO

BACKGROUND: Tuberculous meningitis (TBM) is the most devastating manifestation of extra-pulmonary tuberculosis. About 33% of TBM patients die due to very late diagnosis of the disease. Conventional diagnostic methods based on signs and symptoms, cerebrospinal fluid (CSF) smear microscopy or liquid culture suffer from either poor sensitivity or long turnaround time (up to 8 weeks). Therefore, in order to manage the disease efficiently, there is an urgent and unmet need for a rapid and reliable diagnostic test. METHODS: In the current study, to address the diagnostic challenge of TBM, a highly rapid and sensitive structural switching electrochemical aptasensor was developed by combining the electrochemical property of methylene blue (MB) with the molecular recognition ability of a ssDNA aptamer. To demonstrate the clinical diagnostic utility of the developed aptasensor, a blinded study was performed on 81 archived CSF specimens using differential pulse voltammetry. RESULTS: The electrochemical aptasensor developed in the current study can detect as low as 10 pg HspX in CSF background and yields a highly discriminatory response (P<0.0001) for TBM and not-TBM categories with ~95% sensitivity and ~97.5% specificity and has the ability to deliver sample-to-answer in ≤30 minutes. CONCLUSION: In summary, we demonstrate a new aptamer-based electrochemical biosensing strategy by exploiting the target-induced structural switching of H63 SL-2 M6 aptamer and electroactivity of aptamer-tagged MB for the detection of HspX in CSF samples for the diagnosis of TBM. Further, the clinical utility of this sensor could be extended for the diagnosis of other forms of tuberculosis in the near future.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Testes Diagnósticos de Rotina/métodos , Técnicas Eletroquímicas/métodos , Mycobacterium tuberculosis/genética , Tuberculose Meníngea/diagnóstico , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , DNA Bacteriano/genética , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Meníngea/líquido cefalorraquidiano , Tuberculose Meníngea/microbiologia
14.
Anal Biochem ; 564-565: 80-87, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352198

RESUMO

Pleural tuberculosis (pTB) is diagnosed by using a composite reference standard (CRS) since microbiological methods are grossly inadequate and an accurate diagnostic test remains an unmet need. The present study aimed to evaluate the utility of Mycobacterium tuberculosis (Mtb) antigen and DNA-based tests for pTB diagnosis. Patients were classified as 'Definite TB', 'Probable TB' and 'Non-TB' disease according to the CRS. We assessed the performance of in-house antigen detection assays, namely antibody-based Enzyme-Linked ImmunoSorbent Assay (ELISA) and aptamer-based Aptamer-Linked Immobilized Sorbent Assay (ALISA), targeting Mtb HspX protein and DNA-based tests namely, Xpert MTB/RIF and in-house devR-qPCR. ROC curves were generated for the combined group of 'Definite TB' and 'Probable TB' vs. 'Non-TB' disease group and cut-off values were derived to provide specificity of ≥98%. The sensitivity of ALISA was ∼93% vs. ∼24% of ELISA (p-value ≤0.0001). devR-qPCR exhibited a sensitivity of 50% vs. ∼22% of Xpert (p-value ≤0.01). This novel aptamer-based ALISA test surpasses the sensitivity criterion and matches the specificity requirement spelt out in the 'Target product profile' for extrapulmonary tuberculosis samples by Unitaid (Sensitivity ≥80%, Specificity 98%). The superior performance of the aptamer-based ALISA test indicates its translational potential to bridge the existing gap in pTB diagnosis.


Assuntos
Aptâmeros de Nucleotídeos/genética , Tuberculose Pleural/diagnóstico , Adulto , Proteínas de Bactérias/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Tuberculose Pleural/microbiologia
15.
Tuberculosis (Edinb) ; 112: 27-36, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205966

RESUMO

Tuberculous meningitis (TBM) is the most severe manifestation of tuberculosis and its diagnosis remains a challenge even today due to the lack of an adequate test. HspX antigen of Mycobacterium tuberculosis was previously established as a reliable diagnostic biomarker for TBM in an ELISA test format using anti-HspX polyclonal antibodies. Towards overcoming the limitations of batch-to-batch variation and challenges of scalability in antibody generation, we utilized Systematic Evolution of Ligands by EXponential enrichment (SELEX) to develop high affinity DNA aptamers against HspX as an alternative diagnostic reagent. Post-SELEX optimization of the best-performing aptamer candidate, H63, established its derivative H63 SL-2 M6 to be superior to its parent. Aptamer H63 SL-2 M6 displayed a specific and high affinity interaction with HspX (Kd ∼9.0 × 10-8 M). In an Aptamer Linked Immobilized Sorbent Assay (ALISA), H63 SL-2 M6 significantly differentiated between cerebrospinal fluid specimens from TBM and non-TBM subjects (n = 87, ***p < 0.0001) with ∼100% sensitivity and ∼91% specificity. Notably, ALISA exhibited comparable performance with previously reported antibody-based ELISA and qPCR. Altogether, our findings establish the utility of HspX aptamer for the reliable diagnosis of TBM and pave the way for developing an aptamer-based point-of-care test for TBM.


Assuntos
Antígenos de Bactérias/líquido cefalorraquidiano , Aptâmeros de Nucleotídeos/síntese química , Proteínas de Bactérias/líquido cefalorraquidiano , Mycobacterium tuberculosis/metabolismo , Técnica de Seleção de Aptâmeros , Tuberculose Meníngea/diagnóstico , Antígenos de Bactérias/genética , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Proteínas de Bactérias/genética , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Tuberculose Meníngea/líquido cefalorraquidiano , Tuberculose Meníngea/microbiologia
16.
PLoS One ; 12(12): e0189149, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29216262

RESUMO

Direct smear microscopy of sputum forms the mainstay of TB diagnosis in resource-limited settings. Stained sputum smear slides can serve as a ready-made resource to transport sputum for molecular drug susceptibility testing. However, bio-safety is a major concern during transport of sputum/stained slides and for laboratory workers engaged in processing Mycobacterium tuberculosis infected sputum specimens. In this study, a bio-safe USP (Universal Sample Processing) concentration-based sputum processing method (Bio-safe method) was assessed on 87 M. tuberculosis culture positive sputum samples. Samples were processed for Ziehl-Neelsen (ZN) smear, liquid culture and DNA isolation. DNA isolated directly from sputum was subjected to an IS6110 PCR assay. Both sputum DNA and DNA extracted from bio-safe ZN concentrated smear slides were subjected to rpoB PCR and simultaneously assessed by DNA sequencing for determining rifampin (RIF) resistance. All sputum samples were rendered sterile by Bio-safe method. Bio-safe smears exhibited a 5% increment in positivity over direct smear with a 14% increment in smear grade status. All samples were positive for IS6110 and rpoB PCR. Thirty four percent samples were RIF resistant by rpoB PCR product sequencing. A 100% concordance (κ value = 1) was obtained between sequencing results derived from bio-safe smear slides and bio-safe sputum. This study demonstrates that Bio-safe method can address safety issues associated with sputum processing, provide an efficient alternative to sample transport in the form of bio-safe stained concentrated smear slides and can also provide information on drug (RIF) resistance by direct DNA sequencing.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacologia , Escarro/microbiologia , Humanos , Reação em Cadeia da Polimerase/métodos
17.
Future Microbiol ; 12: 1201-1218, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28972418

RESUMO

Pleural tuberculosis (pTB) is a grave form of extrapulmonary tuberculosis. Microbiological tests are usually found to be inadequate for pTB diagnosis. The absence of a uniform 'composite reference standard' is challenging; therefore, diagnosis is usually performed using a combination of diversified criteria. Nucleic acid tests vary in diagnostic accuracy and have not yet been integrated into clinical decision making. This review assesses the varied criteria used for pTB classification and the challenges afflicting pleural fluid-based DNA diagnostic tests, namely, PCR and Xpert® MTB/RIF. In the 58 studies (PCR: n = 33; Xpert: n = 25) analyzed, reference standards were heterogeneous and PCR/Xpert pooled sensitivity values (range: 0-100%) were inadequate. However, the consistent high specificity of Xpert (range: 90-100%) indicated its utility as a 'rule-in' test. There is an urgent need to evaluate existing and new molecular tests in well-designed studies  to accurately assess their utility for pTB diagnosis. To conclude, rapid and accurate tests are warranted for pTB diagnosis.


Assuntos
Técnicas de Diagnóstico Molecular/normas , Mycobacterium tuberculosis/genética , Ácidos Nucleicos/análise , Tuberculose Pleural/diagnóstico , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Humanos , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/patogenicidade , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Tuberculose Pleural/classificação , Tuberculose Pleural/microbiologia
18.
J Clin Microbiol ; 55(6): 1755-1766, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28330890

RESUMO

Drug-resistant tuberculosis (TB) is a major threat to TB control worldwide. Globally, only 40% of the 340,000 notified TB patients estimated to have multidrug-resistant-TB (MDR-TB) were detected in 2015. This study was carried out to evaluate the utility of high-resolution melt curve analysis (HRM) for the rapid and direct detection of MDR-TB in Mycobacterium tuberculosis in sputum samples. A reference plasmid library was first generated of the most frequently observed mutations in the resistance-determining regions of rpoB, katG, and an inhA promoter and used as positive controls in HRM. The assay was first validated in 25 MDR M. tuberculosis clinical isolates. The assay was evaluated on DNA isolated from 99 M. tuberculosis culture-positive sputum samples that included 84 smear-negative sputum samples, using DNA sequencing as gold standard. Mutants were discriminated from the wild type by comparing melting-curve patterns with those of control plasmids using HRM software. Rifampin (RIF) and isoniazid (INH) monoresistance were detected in 11 and 21 specimens, respectively, by HRM. Six samples were classified as MDR-TB by sequencing, one of which was missed by HRM. The HRM-RIF, INH-katG, and INH-inhA assays had 89% (95% confidence interval [CI], 52, 100%), 85% (95% CI, 62, 97%), and 100% (95% CI, 74, 100%) sensitivity, respectively, in smear-negative samples, while all assays had 100% sensitivity in smear-positive samples. All assays had 100% specificity. Concordance of 97% to 100% (κ value, 0.9 to 1) was noted between sequencing and HRM. Heteroresistance was observed in 5 of 99 samples by sequencing. In conclusion, the HRM assay was a cost-effective (Indian rupee [INR]400/US$6), rapid, and closed-tube method for the direct detection of MDR-TB in sputum, especially for direct smear-negative cases.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Técnicas de Genotipagem/métodos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , DNA Bacteriano/genética , Inibidores da Síntese de Ácidos Graxos , Humanos , Isoniazida/farmacologia , Mycobacterium tuberculosis/isolamento & purificação , Rifampina/farmacologia , Sensibilidade e Especificidade , Temperatura de Transição
19.
PLoS One ; 7(9): e44630, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984534

RESUMO

BACKGROUND: Tuberculous meningitis (TBM) is the most common form of neurotuberculosis and the fifth most common form of extrapulmonary TB. Early diagnosis and prompt treatment are the cornerstones of effective disease management. The accurate diagnosis of TBM poses a challenge due to an extensive differential diagnosis, low bacterial load and paucity of cerebrospinal fluid (CSF) especially in children. METHODOLOGY/PRINCIPAL FINDINGS: We describe the utility of ELISA and qPCR for the detection of Mycobacterium tuberculosis (M. tb) proteins (GlcB, HspX, MPT51, Ag85B and PstS1) and DNA for the rapid diagnosis of TBM. CSF filtrates (n = 532) derived from children were classified as 'Definite' TBM (M. tb culture positive, n = 29), 'Probable and Possible' TBM (n = 165) and 'Not-TBM' including other cases of meningitis or neurological disorders (n = 338). ROC curves were generated from ELISA and qPCR data of 'Definite' TBM and Non-Tuberculous infectious meningitis (NTIM) samples and cut-off values were derived to provide ≥ 95% specificity. devR qPCR, GlcB, HspX and PstS1 ELISAs showed 100% (88;100) sensitivity and 96-97% specificity in 'Definite' TBM samples. The application of these cut-offs to 'Probable and Possible' TBM groups yielded excellent sensitivity (98%, 94;99) and specificity (98%, 96;99) for qPCR and for GlcB, HspX and MPT51 antigen ELISAs (sensitivity 92-95% and specificity 93-96%). A test combination of qPCR with GlcB and HspX ELISAs accurately detected all TBM samples at a specificity of ~90%. Logistic regression analysis indicated that these tests significantly added value to the currently used algorithms for TBM diagnosis. CONCLUSIONS: The detection of M. tb GlcB/HspX antigens/devR DNA in CSF is likely to improve the utility of existing algorithms for TBM diagnosis and also hasten the speed of diagnosis.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Malato Sintase/imunologia , Mycobacterium tuberculosis/metabolismo , Tuberculose Meníngea/microbiologia , Algoritmos , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Líquido Cefalorraquidiano/metabolismo , Criança , Diagnóstico Diferencial , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Malato Sintase/metabolismo , Reação em Cadeia da Polimerase/métodos , Valor Preditivo dos Testes , Curva ROC , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Inquéritos e Questionários , Tuberculose Meníngea/diagnóstico
20.
Tuberculosis (Edinb) ; 91(5): 414-26, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764383

RESUMO

Tuberculosis (TB) is the leading cause of death worldwide attributable to a single infectious disease agent. India has more new TB cases annually than any other country. In 2008, India accounted for a fifth of the estimated 9.4 million TB cases globally. There is an overwhelming need for improving TB diagnostics in India through the use of cost effective, patient-friendly methods appropriate to different tiers of the country health system. Substantial progress has been made in India in the field of TB diagnosis and serious efforts have been made to herald the development of diagnostic tests for pulmonary TB, extra pulmonary TB and MDR-TB. Diverse approaches have been attempted towards improving smear microscopy, rapid culture and for differentiation between the Mycobacterium tuberculosis complex and non-tuberculous mycobacteria. Several laboratories have developed in-house PCR assays for diagnosing TB with high accuracy. Approaches for distinguishing M. tuberculosis and/or Mycobacterium bovis infection and disseminated Mycobacterium avium complex infection in HIV-AIDS patients have also been described. Serological tests to detect antigens or antibodies to M. tuberculosis specific components by using cocktails of Excretory/Secretory protein antigens, Ag85 complex antigens, Hsp 65 antigen, RD1 antigens and Rapid Reverse Line Blot Hybridization assays to detect MDR-TB (mutations to rifampicin, isoniazid and streptomycin) have also been developed. Other methods like measurement of adenosine deaminase activity and use of luciferase reporter phages have also been explored for TB diagnosis. These advances in the Indian context are detailed in the present chapter. The validation and application of these methods in laboratory and public health settings is likely to result in improved TB diagnosis and contribute to effective disease management in India.


Assuntos
Técnicas de Laboratório Clínico , Complexo Mycobacterium avium/isolamento & purificação , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Pulmonar/diagnóstico , Anticorpos Antibacterianos/isolamento & purificação , Antígenos de Bactérias/isolamento & purificação , Humanos , Índia/epidemiologia , Complexo Mycobacterium avium/imunologia , Infecção por Mycobacterium avium-intracellulare/epidemiologia , Infecção por Mycobacterium avium-intracellulare/imunologia , Mycobacterium tuberculosis/imunologia , Micobactérias não Tuberculosas/isolamento & purificação , Sensibilidade e Especificidade , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...