Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(40): e202310246, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37559156

RESUMO

Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2 <-2 V vs Fc/Fc+ ), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes-organic molecules with multiple consecutive double bonds-can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately -1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.

2.
J Am Chem Soc ; 145(2): 1072-1082, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595477

RESUMO

The crystal packing of organic chromophores has a profound impact on their photophysical properties. Molecular crystal engineering is generally incapable of producing precisely spaced arrays of molecules for use in photovoltaics, light-emitting diodes, and sensors. A promising alternative strategy is the incorporation of chromophores into crystalline metal-organic frameworks (MOFs), leading to matrix coordination-induced emission (MCIE) upon confinement. However, it remains unclear how the precise arrangement of chromophores and defects dictates photophysical properties in these systems, limiting the rational design of well-defined photoluminescent materials. Herein, we report new, robust Zr-based MOFs constructed from the linker tetrakis(4-carboxyphenyl)ethylene (TCPE4-) that exhibit an unexpected structural transition in combination with a prominent shift from green to blue photoluminescence (PL) as a function of the amount of acid modulator (benzoic, formic, or acetic acid) used during synthesis. Time-resolved PL (TRPL) measurements provide full spectral information and reveal that the observed hypsochromic shift arises due to a higher concentration of linker substitution defects at higher modulator concentrations, leading to broader excitation transfer-induced spectral diffusion. Spectral diffusion of this type has not been reported in a MOF to date, and its observation provides structural information that is otherwise unobtainable using traditional crystallographic techniques. Our findings suggest that defects have a profound impact on the photophysical properties of MOFs and that their presence can be readily tuned to modify energy transfer processes within these materials.


Assuntos
Estruturas Metalorgânicas , Ácido Acético , Ácido Benzoico , Cristalografia , Difusão
3.
Chem Mater ; 35(23): 10086-10098, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38225948

RESUMO

Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.

4.
J Am Chem Soc ; 142(18): 8252-8261, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32279483

RESUMO

The induction of macro and mesopores into two-dimensional porous covalent organic frameworks (COFs) could enhance the exposure of the intrinsic micropores toward the pollutant environment, thereby, improving the performance. However, the challenge is to build a continuous hierarchically porous macro-architecture of crystalline organic materials in the bulk scale. In this regard, we have strategized a novel synthetic method to create hierarchically porous COF foams consisting of ordered micropores (2-2.2 nm) and disordered meso and macropores (50 nm to 200 µm) as well as ordered macropores (1.5 mm to 2 cm). Herein, graphene oxide was used for creating disordered macro and mesopores in COF-GO foams. Considering the rheological features of the precursor hydrogel, we could integrate crystalline and porous COF-GO foams into self-supported three-dimensional (3D)-printed objects with the desired shapes and sizes. Therefore, we have engineered the 3D macro-architecture of COF-GO foams into complex geometries keeping their structural order and continuous porosity intact over a range of more than a million (10-9 m to 10-3 m). The interconnected 3D openings in these COF-GO foams further enhance the rapid and efficient uptake of organic and inorganic pollutants from water (>95% removal within 30 s). The abundant distribution of interconnected macroporous volume (55%) throughout the COF-GO foam matrix enhances the flow of water (1.13 × 10-3 m·s-1) which results in efficient mass transport and adsorption.

5.
Chem Asian J ; 15(11): 1683-1687, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32270910

RESUMO

In this work we have achieved epoxide to cyclic carbonate conversion using a metal-free polymeric catalyst under ambient CO2 pressure (1.02 atm) using a balloon setup. The triazine containing polymer (CYA-ANIS) was prepared from cyanuric chloride (CYA-Cl) and o-dianisidine (ANIS) in anhydrous DMF as solvent by refluxing under the N2 gas environment. The presence of triazine and amine functional groups in the polymer results in the adsorption of CO2 up to 7 cc/g at 273 K. This inspired us to utilize the polymer for the conversion of a series of functionalised epoxides into their corresponding cyclic carbonates in the presence of tetrabutyl ammonium iodide (TBAI) as co-catalyst. The product has wide range of applications like solvent in lithium ion battery, precursor for polycarbonate, etc. The catalyst was efficient for the conversion of different mono and di-epoxides into their corresponding cyclic carbonates under atmospheric pressure in the presence of TBAI as co-catalyst. The study indicates that epoxide attached with electron withdrawing groups (like, CH2 Cl, glycidyl ether, etc.) displayed better conversion compared to simple alkane chain attached epoxides. This is mainly due to the stabilization of electron rich intermediates produced during the reaction (e. g. epoxide ring opening or CO2 incorporation into the halo-alkoxide anion). This catalyst mixture was capable to maintain its reactivity up to five cycles without losing its activity. Post catalytic characterization clearly supports the heterogeneous and recyclable nature of the catalyst.

6.
J Am Chem Soc ; 141(51): 20371-20379, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782923

RESUMO

Insolubility of covalent organic frameworks (COFs) in organic solvents is one of the major obstacles for the potential application of these extended networks such as drug delivery, sensing, optoelectronics, and semiconductor device fabrication. The present work proposes a unique way to make uniform, solution-processable, crystalline, and porous COF nanospheres directly from the homogeneous solution of amine and aldehyde via spatial and temporal control of the nucleation and growth. This strategy of direct nucleation simultaneously showcases the caliber to tune the size of the COF nanospheres from 25 to 570 nm. We have also demonstrated the concept of mesoscale covalent self-assembly of those solution-processable COF nanospheres in the liquid-liquid interface (DCM-water bilayer) for the very first time, transmuting them into self-standing COF thin films with long-range ordered arrangements in two dimensions. The crystalline and porous (with TpAzo showing highest SBET of 1932 m2 g-1) free-standing COF thin films could be fabricated in a wide range of thicknesses from as low as 21 nm to as high as 630 nm. Both ß-ketoenamine (TpAzo, TpDPP) and imine (TpOMeAzo, TpOMeDPP) linked COF thin films have been synthesized via mesoscale covalent self-assembly of the solution-processable COF nanospheres illustrating the generality of this eloquent methodology. Further, the solution processability has been tested and utilized to cast COF thin films uniformly in the inner and outer surface of an alumina hollow fiber membrane. The COF thin film-alumina hollow fiber membrane composites have showcased promising selective molecular separation of He and O2, He and CO2, and He and N2.

7.
Chem Sci ; 10(38): 8889-8894, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31762974

RESUMO

The two-dimensional structural features of covalent organic frameworks (COFs) can promote the electrochemical storage of cations like H+, Li+, and Na+ through both faradaic and non-faradaic processes. However, the electrochemical storage of cations like Zn2+ ion is still unexplored although it bears a promising divalent charge. Herein, for the first time, we have utilized hydroquinone linked ß-ketoenamine COF acting as a Zn2+ anchor in an aqueous rechargeable zinc ion battery. The charge-storage mechanism comprises of an efficient reversible interlayer interaction of Zn2+ ions with the functional moieties in the adjacent layers of COF (-182.0 kcal mol-1). Notably, due to the well-defined nanopores and structural organization, a constructed full cell, displays a discharge capacity as high as 276 mA h g-1 at a current rate of 125 mA g-1.

8.
ACS Appl Mater Interfaces ; 11(34): 30828-30837, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31386343

RESUMO

The redox-active and porous structural backbone of covalent organic frameworks (COFs) can facilitate high-performance electrochemical energy storage devices. However, the utilities of such 2D materials as supercapacitor electrodes in advanced self-charging power-pack systems have been obstructed due to the poor electrical conductivity and subsequent indigent performance. Herein, we report an effective strategy to enhance the electrical conductivity of COF thin sheets through the in situ solid-state inclusion of carbon nanofibers (CNF) into the COF precursor matrix. The obtained COF-CNF hybrids possess a significant intermolecular π···π interaction between COF and the graphene layers of the CNF. As a result, these COF-CNF hybrids (DqTp-CNF and DqDaTp-CNF) exhibit good electrical conductivity (0.25 × 10-3 S cm-1), as well as high performance in electrochemical energy storage (DqTp-CNF: 464 mF cm-2 at 0.25 mA cm-2). Also, the fabricated, mechanically strong quasi-solid-state supercapacitor (DqDaTp-CNF SC) delivered an ultrahigh device capacitance of 167 mF cm-2 at 0.5 mA cm-2. Furthermore, we integrated a monolithic photovoltaic self-charging power pack by assembling DqDaTp-CNF SC with a perovskite solar cell. The fabricated self-charging power pack delivered excellent performance in the areal capacitance (42 mF cm-2) at 0.25 mA cm-2 after photocharging for 300 s.

9.
J Am Chem Soc ; 141(18): 7572-7581, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017396

RESUMO

The key factor responsible for fast diffusion and mass transfer through a porous material is the availability of a widely open pore interior having complete accessibility from their surface. However, because of their highly stacked nature, ordered two-dimensional (2D) materials fail to find real-world applicability, as it is difficult to take advantage of their complete structure, especially the inner cores. In this regard, three-dimensional (3D) nanostructures constructed from layered two-dimensional crystallites could prove to be advantageous. However, the real challenge is to cultivate a porous nanostructure with ordered pores where the pores are surrounded by crystalline walls. Herein, a simple yet versatile in situ gas-phase foaming technique has been employed to address these cardinal issues. The use of baking soda leads to the continuous effervescence of CO2 during the crystallization of foam, which creates ripples and fluctuations on the surface of the 2D crystallites. The induction of ordered micropores within the disordered 3D architecture synergistically renders fast diffusion of various guests through the interconnected pore network. The high-density defects in the hierarchically porous structure help in ultrafast adsorption (<10 s) of various pollutants (removal efficiency of 99%) from water, all of which would lead to significant environmental benefit. The pseudo-second-order rate constant for the BPA pollutant is 182.3 g mg-1 min-1, which is the highest among all the literature reports to date. The high removal efficiency (highest efficiency of 94% and average efficiency of 70%) of a persistent organic pollutant has been attended for the first time.


Assuntos
Estruturas Metalorgânicas/química , Nanoestruturas/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Microscopia Confocal , Estrutura Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Poluentes Químicos da Água/química
10.
Angew Chem Int Ed Engl ; 58(13): 4243-4247, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30697893

RESUMO

Porous solids that can be switched between different forms with distinct physical properties are appealing candidates for separation, catalysis, and host-guest chemistry. In this regard, porous organic cages (POCs) are of profound interest because of their solution-state accessibility. However, the application of POCs is limited by poor chemical stability. Synthesis of an exceptionally stable imine-linked (4+6) porous organic cage (TpOMe-CDA) is reported using 2,4,6-trimethoxy-1,3,5-triformyl benzene (TpOMe) as a precursor aldehyde. Introduction of the -OMe functional group to the aldehyde creates significant steric and hydrophobic characteristics in the environment around the imine bonds that protects the cage molecules from hydrolysis in the presence of acids or bases. The electronic effect of the -OMe group also plays an important role in enhancing the stability of the reported POCs. As a consequence, TpOMe-CDA reveals exceptional chemical stability in neutral, acidic and basic conditions, even in 12 m NaOH. Interestingly, TpOMe-CDA exists in three different porous and non-porous polymorphic forms (α, ß, and γ) with respect to differences in crystallographic packing and the orientation of the flexible methoxy groups. All of the polymorphs retain their crystallinity even after treatment with acids and bases. All the polymorphs of TpOMe-CDA differ significantly in their properties as well as morphology and could be reversibly switched in the presence of an external stimulus.

11.
J Am Chem Soc ; 140(35): 10941-10945, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30132332

RESUMO

Covalent organic frameworks (COFs) have emerged as promising electrode materials in supercapacitors (SCs). However, their insoluble powder-like nature, poor capacitive performance in pristine form, integrated with inferior electrochemical stability is a primary concern for their long-term use in electrochemical devices. Keeping this in perspective, herein we report a redox active and hydrogen bonded COF with ultrahigh stability in conc. H2SO4 (18 M), conc. HCl (12 M) and NaOH (9 M). The as-synthesized COF fabricated as thin sheets were efficiently employed as a free-standing supercapacitor electrode material using 3 M aq. H2SO4 as an electrolyte. Moreover, the pristine COF sheet showcased outstanding areal capacitance 1600 mF cm-2 (gravimetric 169 F g-1) and excellent cyclic stability (>100 000) without compromising its capacitive performance or Coulombic efficiency. Moreover, as a proof-of-concept, a solid-state supercapacitor device was also assembled and subsequently tested.

12.
Angew Chem Int Ed Engl ; 57(34): 10894-10898, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29958331

RESUMO

Poor mechanical stability of the polymer electrolyte membranes remains one of the bottlenecks towards improving the performance of the proton exchange membrane (PEM) fuel cells. The present work proposes a unique way to utilize crystalline covalent organic frameworks (COFs) as a self-standing, highly flexible membrane to further boost the mechanical stability of the material without compromising its innate structural characteristics. The as-synthesized p-toluene sulfonic acid loaded COF membranes (COFMs) show the highest proton conductivity (as high as 7.8×10-2  S cm-1 ) amongst all crystalline porous organic polymeric materials reported to date, and were tested under real PEM operating conditions to ascertain their practical utilization as proton exchange membranes. Attainment of 24 mW cm-2 power density, which is the highest among COFs and MOFs, highlights the possibility of using a COF membrane over the other state-of-the-art crystalline porous polymeric materials reported to date.

13.
Angew Chem Int Ed Engl ; 57(20): 5797-5802, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29573097

RESUMO

A rapid and scalable synthesis of six new imine-linked highly porous and crystalline COFs is presented that feature exceptionally high chemical stability in harsh environments including conc. H2 SO4 (18 m), conc. HCl (12 m), and NaOH (9 m). This is because of the presence of strong interlayer C-H⋅⋅⋅N hydrogen bonding among the individual layers, which provides significant steric hindrance and a hydrophobic environment around the imine (-C=N-) bonds, thus preventing their hydrolysis in such an abrasive environment. These COFs were further converted into porous, crystalline, self-standing, and crack-free COF membranes (COFMs) with extremely high chemical stability for their potential applications for sulfuric acid recovery. The as-synthesized COFMs exhibit unprecedented permeance for acetonitrile (280 Lm-2 h-1 bar-1 ) and acetone (260 Lm-2 h-1 bar-1 ).

14.
Angew Chem Int Ed Engl ; 55(27): 7806-10, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-26953562

RESUMO

Two new chemically stable triazine- and phenyl-core-based crystalline porous polymers (CPPs) have been synthesized using a single-step template-free solvothermal route. Unique morphological diversities were observed for these CPPs [2,3-DhaTta (ribbon) and 2,3-DhaTab (hollow sphere)] by simply altering the linker planarity. A detailed time-dependent study established a significant correlation between the molecular level structures of building blocks with the morphology of CPPs. Moreover, a DFT study was done for calculating the interlayer stacking energy, which revealed that the extent of stacking efficiency is responsible for governing the morphological diversity in these CPPs.

15.
Nat Commun ; 6: 6786, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858416

RESUMO

Covalent organic frameworks are a family of crystalline porous materials with promising applications. Although active research on the design and synthesis of covalent organic frameworks has been ongoing for almost a decade, the mechanisms of formation of covalent organic frameworks crystallites remain poorly understood. Here we report the synthesis of a hollow spherical covalent organic framework with mesoporous walls in a single-step template-free method. A detailed time-dependent study of hollow sphere formation reveals that an inside-out Ostwald ripening process is responsible for the hollow sphere formation. The synthesized covalent organic framework hollow spheres are highly porous (surface area ∼1,500 m(2 )g(-1)), crystalline and chemically stable, due to the presence of strong intramolecular hydrogen bonding. These mesoporous hollow sphere covalent organic frameworks are used for a trypsin immobilization study, which shows an uptake of 15.5 µmol g(-1) of trypsin.


Assuntos
Anisóis/química , Enzimas Imobilizadas/química , Nitrilas/síntese química , Compostos de Terfenil/síntese química , Tripsina/química , Cristalização , Ligação de Hidrogênio , Nitrilas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Compostos de Terfenil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...